Network Working Group S. Sakane
Request for Comments: 4430 K. Kamada
Category: Standards Track Yokogawa Electric Corp.
M. Thomas

J. Vilhuber

Cisco Systems

March 2006

Kerberized Internet Negotiation of Keys (KINK)
Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards"™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract

This document describes the Kerberized Internet Negotiation of Keys
(KINK) protocol. KINK defines a low-latency, computationally
inexpensive, easily managed, and cryptographically sound protocol to
establish and maintain security associations using the Kerberos
authentication system. KINK reuses the Quick Mode payloads of the
Internet Key Exchange (IKE), which should lead to substantial reuse
of existing IKE implementations.

Table of Contents

1. INtroduCtion ... e e e e e e e 3
1.1. Conventions Used in This Document .. ._ _ 3

2. Protocol OVerVIeW . .. i e e e e e aaaaaaan 4
3. Message FIoWS .. i e e e aaaaaaan 4
3.1. GETTGT Message FIOWt i e ccaacaaaaaann 5
3.2. CREATE Message FIOWo i i e deccccaaaaaaaann 6
3.2.1. CREATE Key Derivation Considerations 7

3.3. DELETE Message FIOW it e e e e aeaaaaas 8
3.4. STATUS Message FIOW et a e i e aaaaaaas 9
3.5, Reporting Errors ... e aeaaaaan 9
3.6. Rekeying Security Associationso oucoeaacaaaaaan 10
3.7. Dead Peer DeteCtionttt a e e e 10
3.7.1. Coping with Dead User-to-User Peers 12

Sakane, et al. Standards Track [Page 1]

RFC 4430 KINK March 2006

4. KINK Message Format it e e e e e c e e ceaeaeaaaaanns 13
4.1. KINK Alignment Rules i e e e e aaaaaaaann 15
4.2, KINK Payloads et e e e aea et 16

4.2.1. KINK AP_REQ Payloado i i e e aaaaaaann 17
4.2.2. KINK_ AP_REP Payload i e e aaaaaaann 18
4.2.3. KINK_KRB_ERROR Payload oo 19
4.2.4_. KINK_TGT_REQ Payload i ii e 20
4.2.5. KINK_TGT_REP Payloado e e 21
4.2.6. KINK ISAKMP Payload ... me e i e ie e aaeaaaann 21
4.2.7. KINK ENCRYPT Payloadcciiiie i e e aaaaaaann 22
4.2.8. KINK ERROR Payload oo aiaaaaann 23

5. Differences from IKE Quick Mode e o aaaaaan 25
5.1. Security Association Payloadso iioaaiaaaaaan 26
5.2. Proposal and Transform Payloads 26
5.3. Identification Payloads i 26
5.4. Nonce Payloads e a e 26
5.5. Notify Payloads et e eaaa e 27
5.6. Delete Payloadso e e aecceaaaaaaaaan 28
5.7. KE Payloadst i i et e e aeeceaaaaaaaaan 28

6. Message Construction and Constraints for IPsec DOl 28
6.1. REPLY MeSSage . .. oo e e ettt e e e e e e e 28
6.2. ACK MeSSage . .. oot e et e it d et e e e e e 28
6.3. CREATE MESSage - - oottt it it it a e e e e e e e e aeaaea e 29
6.4. DELETE MeSSaQe ..o cc it e i e e e e e e e e e e e e e e acaaaaaaaann 30
6.5. STATUS MESSaAQE - o i i i e e e e e e d e d e d e d e e e e e e amaeaaaaaann 31
6.6. GETTGT MESSAQgE - i i i it et e e e e a e e e e e e e e e 32

7. ISAKMP Key Derivation it a e e a e e 32

8. Key Usage Numbers for Kerberos Key Derivation ..._..._..__._.._._...._.. 33

9. Transport Considerations oot it a e a e e e e aaaaaa 33

10. Security Considerationso o e e e e aeeaaaaaaaaan 34

11. TANA Consideratlionsottt e e e e a e e 35

12. Forward Compatibility Considerations oo..-. 35
12.1. New Versions of Quick Mode 36
2 [36

13. Related Work e e e e e e 36

14. Acknowledgementso e e e e e a e aaaaaaaaa 37

15, ReFEreNCEeS . oo e e e e e e a e 37
15.1. Normative References et ea e aaaaaaan 37
15.2. Informative References i 38

Sakane, et al. Standards Track [Page 2]

RFC 4430 KINK March 2006

1.

1.

Introduction

KINK is designed to provide a secure, scalable mechanism for
establishing keys between communicating entities within a centrally
managed environment in which It is important to maintain consistent
security policy. The security goals of KINK are to provide privacy,
authentication, and replay protection of key management messages and
to avoid denial of service vulnerabilities whenever possible. The
performance goals of the protocol are to have a low computational
cost, low latency, and a small footprint. It is also to avoid or
minimize the use of public key operations. In particular, the
protocol provides the capability to establish IPsec security
associations (SAs) in two messages with minimal computational effort.
These requirements are described in RFC 3129 [REQ4KINK].

Kerberos [KERBEROS] provides an efficient authentication mechanism
for clients and servers using a trusted third-party model. Kerberos
also provides a mechanism for cross-realm authentication natively. A
client obtains a ticket from an online authentication server, the Key
Distribution Center (KDC). The ticket is then used to construct a
credential for authenticating the client to the server. As a result
of this authentication operation, the server will also share a secret
key with the client. KINK uses this property as the basis of
distributing keys for IPsec.

The central key management provided by Kerberos is efficient because
it limits computational cost and limits complexity versus IKE’s
necessity of using public key cryptography [IKE]. Initial
authentication to the KDC may be performed using either symmetric
keys, or asymmetric keys using the Public Key Cryptography for
Initial Authentication in Kerberos [PKINIT]; however, subsequent
requests for tickets as well as authenticated exchanges between the
client and servers always utilize symmetric cryptography. Therefore,
public key operations (if any) are limited and are amortized over the
lifetime of the credentials acquired in the initial authentication
operation to the KDC. For example, a client may use a single public
key exchange with the KDC to efficiently establish multiple SAs with
many other servers in the realm of the KDC. Kerberos also scales
better than direct peer-to-peer keying when symmetric keys are used.
The reason is that since the keys are stored in the KDC, the number
of principal keys is O(n+m) rather than O(n*m), where "n" is the
number of clients and "m" is the number of servers.

1. Conventions Used in This Document
The key words "MUST"™, "MUST NOT', "REQUIRED"™, "SHALL'™, "SHALL NOT",

""SHOULD™, "SHOULD NOT'", "RECOMMENDED'", "MAY", and "OPTIONAL"™ in this
document are to be interpreted as described in [RFC2119].

Sakane, et al. Standards Track [Page 3]

RFC 4430 KINK March 2006

It is assumed that the readers are familiar with the terms and
concepts described in Kerberos Version 5 [KERBEROS], IPsec [IPSEC],
and IKE [IKE].

2. Protocol Overview

KINK is a command/response protocol that can create, delete, and
maintain IPsec SAs. Each command or response contains a common
header along with a set of type-length-value payloads. The type of a
command or a response constrains the payloads sent in the messages of
the exchange. KINK itself is a stateless protocol in that each
command or response does not require storage of hard state for KINK.
This is iIn contrast to IKE, which uses Main Mode to first establish
an Internet Security Association and Key Management Protocol (1SAKMP)
SA followed by subsequent Quick Mode exchanges.

KINK uses Kerberos mechanisms to provide mutual authentication and
replay protection. For establishing SAs, KINK provides
confidentiality for the payloads that follow the Kerberos AP-REQ
payload. The design of KINK mitigates denial of service attacks by
requiring authenticated exchanges before the use of any public key
operations and the installation of any state. KINK also provides a
means of using Kerberos User-to-User mechanisms when there is not a
key shared between the server and the KDC. This is typically, but
not limited to, the case with IPsec peers using PKINIT for initial
authentication.

KINK directly reuses Quick Mode payloads defined in section 5.5 of
[IKE], with some minor changes and omissions. In most cases, KINK
exchanges are a single command and its response. An optional third
message is required when creating SAs, only if the responder rejects
the first proposal from the initiator or wants to contribute the
keying materials. KINK also provides rekeying and dead peer
detection.

3. Message Flows

All KINK message flows follow the same pattern between the two peers:
a command, a response, and an optional acknowledgement in a CREATE
flow. A command is a GETTGT, CREATE, DELETE, or STATUS message; a
response is a REPLY message; and an acknowledgement is an ACK
message -

KINK uses Kerberos as the authentication mechanism; therefore, a KINK
host needs to get a service ticket for each peer before actual key
negotiations. This is basically a pure Kerberos exchange and the
actual KDC traffic here is for illustrative purposes only. In
practice, when a principal obtains various tickets is a subject of

Sakane, et al. Standards Track [Page 4]

RFC 4430 KINK March 2006

Kerberos and local policy consideration. As an exception, the GETTGT
message flow of KINK (described in section 3.1) is used when a User-
to-User authentication is required. In this flow, we assume that
both A and B have ticket-granting tickets (TGTs) from their KDCs.

After a service ticket is obtained, KINK uses the CREATE message flow
(section 3.2), DELETE message flow (section 3.3), and STATUS message
flow (section 3.4) to manage SAs. In these flows, we assume that A
has a service ticket for B.

3.1. GETTGT Message Flow

This flow is used to retrieve a TGT from the remote peer in User-to-
User authentication mode.

IT the initiator determines that it will not be able to get a normal
(non-User-to-User) service ticket for the responder, it can try a
User-to-User authentication. In this case, it First fetches a TGT
from the responder in order to get a User-to-User service ticket:

A B KDC
1 GETTGT+KINK_TGT REQ------> o
7R REPLY+KINK_TGT_REP

3 TGS-REQ+TGT(B)--————=——m——mmmm oo >
A S TGS-REP

Figure 1: GETTGT Message Flow
The initiator MAY support the following events as triggers to go to
the User-to-User path. Note that the two errors described below will
not be authenticated, and how to act on them depends on the policy.

o] The local policy says that the responder requires a User-
to-User authentication.

o] A KRB_AP_ERR _USER TO USER_REQUIRED error is returned from
the responder.

o] A KDC_ERR_MUST_USE_USER2USER error is returned from the
KDC.

Sakane, et al. Standards Track [Page 5]

RFC 4430 KINK March 2006

3.2. CREATE Message Flow

This flow creates SAs. The CREATE command takes an "optimistic"
approach, where SAs are initially created on the expectation that the
responder will choose the initial proposed payload. The optimistic
proposal is placed in the first transform payload(s) of the first
proposal. The initiator MUST check to see if the optimistic proposal
was selected by comparing all transforms and attributes, which MUST
be identical to those iIn the initiator’s optimistic proposal with the
exceptions of LIFE_KILOBYTES and LIFE_SECONDS. Each of these
attributes MAY be set to a lower value by the responder and still
expect optimistic keying, but MUST NOT be set to a higher value that
MUST generate a NO-PROPOSAL-CHOSEN error. The initiator MUST use the
shorter lifetime.

When a CREATE command contains an existing Security Parameter Index
(SPI1), the responder MUST reject it and SHOULD return an ISAKMP
notification with INVALID-SPI.

When a key exchange (KE) payload is sent from the initiator but the
responder does not support it, the responder MUST reject it with an
ISAKMP notification of INVALID-PAYLOAD-TYPE containing a KE payload
type as its notification data. When the initiator receives this
error, it MAY retry without a KE payload (as another transaction) if
its policy allows that.

A B KDC

A creates an optimistic inbound SA (B->A) unless using a KE.
1 CREATE+ISAKMP———————————— >

B creates an inbound SA (A->B).
B creates an outbound SA (B->A) if optimistic and not using a KE.

2 < REPLY+1SAKMP
A creates an outbound SA (A->B).

A replaces an inbound SA (B->A) if non-optimistic.
A creates an inbound SA (B->A) if using a KE.

[B creates an outbound SA (B->A). 1

Figure 2: CREATE Message Flow

Sakane, et al. Standards Track [Page 6]

RFC 4430 KINK March 2006

Creating SAs has two modes: 2-way handshake and 3-way handshake.
The initiator usually begins a negotiation expecting a 2-way
handshake. When the optimistic proposal is not chosen by the
responder, the negotiation is switched to a 3-way handshake. When
and only when the initiator uses a KE payload, 3-way handshake is
expected from the beginning.

A 2-way handshake is performed in the following steps:

1) The host A creates an inbound SA (B->A) in its SA database
using the optimistic proposal In the ISAKMP SA proposal. 1t is
then ready to receive any messages from B.

2) A then sends the CREATE message to B.

3) If B agrees to A’s optimistic proposal, B creates an inbound SA
(A->B) and an outbound SA (B->A) in its database. |If B does
not choose the first proposal or wants to add a Nonce payload,
switch to step 3 of the 3-way handshake described below.

4) B then sends a REPLY to A without a Nonce payload and without
requesting an ACK.

5) Upon receipt of the REPLY, A creates an outbound SA (A->B).

A 3-way handshake is performed in the following steps:

1) The host A sends the CREATE message to B without creating any
SA.

2) B chooses one proposal according to its policy.

3) B creates an inbound SA (A->B) and sends the actual choice in
the REPLY. It SHOULD send the optional Nonce payload (as it
does not increase message count and generally increases entropy
sources) and MUST request that the REPLY be acknowledged.

4) Upon receipt of the REPLY, A creates the inbound SA (B->A) (or
modifies it as necessary, if switched from 2-way), and the
outbound SA (A->B).

5) A now sends the ACK message.-

6) Upon receipt of the ACK, B installs the final outbound SA
(B—>A).

IT B does not choose the first proposal, adds a nonce, or accepts the
KE exchange, then it MUST request an ACK (i.e., set the ACKREQ bit)
so that it can install the final outbound SA. The initiator MUST
always generate an ACK if the ACKREQ bit is set in the KINK header,
even if it believes that the responder was in error.

3.2.1. CREATE Key Derivation Considerations
The CREATE command’s optimistic approach allows an SA to be created

in two messages rather than three. The implication of a two-message
exchange is that B will not contribute to the key since A must set up

Sakane, et al. Standards Track [Page 7]

RFC 4430 KINK March 2006

the inbound SA before it receives any additional keying material from
B. This may be suspect under normal circumstances; however, KINK
takes advantage of the fact that the KDC provides a reliable source
of randomness which is used in key derivation. In many cases, this
will provide an adequate session key so that B will not require an
acknowledgement. Since B is always at liberty to contribute to the
keying material, this is strictly a trade-off between the key
strength versus the number of messages, which KINK implementations
may decide as a matter of policy.

3.3. DELETE Message Flow

The DELETE command deletes existing SAs. The domain of
interpretation (DOl)-specific payloads describe the actual SA to be
deleted. For the IPsec DOl, those payloads will include an ISAKMP
payload containing the list of the SPIs to be deleted.

A B KDC

A deletes outbound SA to B.
1 DELETE+ISAKMP———————————— >
B deletes inbound and outbound SA to A.
2 <o REPLY+1SAKMP
A deletes inbound SA to B.
Figure 3: DELETE Message Flow

The DELETE command takes a '‘pessimistic' approach, which does not
delete inbound SAs until it receives acknowledgement that the other
host has received the DELETE. The exception to the pessimistic
approach is if the initiator wants to immediately cease all activity
on an inbound SA. In this case, it MAY delete the inbound SA as well
in step 1, above.

The 1SAKMP payload contains ISAKMP Delete payload(s) that indicate
the inbound SA(s) for the initiator of this flow. KINK does not
allow half-open SAs; thus, when the responder receives a DELETE
command, it MUST delete SAs of both directions, and MUST reply with
ISAKMP Delete payload(s) that indicate the inbound SA(s) for the
responder of this flow. If the responder cannot find an appropriate
SP1 to be deleted, it MUST return an ISAKMP notification with
INVALID_SPI, which also serves to inform the initiator that it can
delete the inbound SA.

Sakane, et al. Standards Track [Page 8]

RFC 4430 KINK March 2006

A race condition with the DELETE flow exists. Due to network
reordering, etc., packets in flight while the DELETE operation is
taking place may arrive after the diagrams above, which recommend
deleting the inbound SA. A KINK implementation SHOULD implement a
grace timer that SHOULD be set to a period of at least two times the
average round-trip time, or to a configurable value. A KINK
implementation MAY choose to set the grace period to zero at
appropriate times to delete an SA ungracefully. The behavior
described here is referred from the behavior of the TCP [RFC793]
flags FIN and RST.

3.4. STATUS Message Flow

This flow is used to send any information to a peer or to elicit any
information from a peer. An initiator may send a STATUS command to
the responder at any time, optionally with DOl-specific ISAKMP
payloads. In the case of the IPsec DOl, these are generally in the
form of ISAKMP Notification payloads. A STATUS command is also used
as a means of dead peer detection described in section 3.7.

A B KDC
1 STATUS[+ISAKMP]---------- >
2 <mmmmmmoooo- REPLY [+1SAKMP]

Figure 4: STATUS Message Flow
3.5. Reporting Errors

When the responder detects an error in a received command, it can
send a DOl-specific payload to indicate the error in a REPLY message.
There are three types of payloads that can indicate errors:
KINK_KRB_ERROR payloads for Kerberos errors, KINK_ERROR payloads for
KINK errors, and KINK_ISAKMP payloads for ISAKMP errors. Details are
described in sections 4.2.3, 4.2.8, and 4.2.6, respectively.

IT the initiator detects an error in a received reply, there is no
means to report it back to the responder. The initiator SHOULD log
the event and MAY take a remedial action by reinitiating the initial
command .

IT the server clock and the client clock are off by more than the
policy-determined clock skew limit (usually 5 minutes), the server
MUST return a KRB_AP_ERR _SKEW. The optional client’s time in the
KRB-ERROR SHOULD be filled out. If the server protects the error by
adding the Cksum field and returning the correct client’s time, the

Sakane, et al. Standards Track [Page 9]

RFC 4430 KINK March 2006

client SHOULD compute the difference (in seconds) between the two
clocks based upon the client and server time contained in the
KRB-ERROR message. The client SHOULD store this clock difference and
use It to adjust its clock iIn subsequent messages. |If the error is
not protected, the client MUST NOT use the difference to adjust
subsequent messages, because doing so would allow an attacker to
construct authenticators that can be used to mount replay attacks.

3.6. Rekeying Security Associations

KINK expects the initiator of an SA to be responsible for rekeying
the SA for two reasons. The first reason is to prevent needless
duplication of SAs as the result of collisions due to an initiator
and responder both trying to renew an existing SA. The second reason
is due to the client/server nature of Kerberos exchanges, which
expects the client to get and maintain tickets. While KINK expects
that a KINK host is able to get and maintain tickets, in practice it
is often advantageous for servers to wait for clients to initiate
sessions so that they do not need to maintain a large ticket cache.

There are no special semantics for rekeying SAs in KINK. That is, in
order to rekey an existing SA, the initiator must CREATE a new SA
followed by either deleting the old SA with the DELETE flow or
letting it time out. When identical flow selectors are available on
different SAs, KINK implementations SHOULD choose the SA most
recently created. It should be noted that KINK avoids most of the
problems of [IKE] rekeying by having a reliable delete mechanism.

Normally, a KINK implementation that rekeys existing SAs will try to
rekey the SA ahead of an SA termination, which may include the hard
lifetime in time/bytecount or the overflow of the sequence number
counter. We call this time "soft lifetime”. The soft lifetime MUST
be randomized to avoid synchronization with similar implementations.
In the case of the lifetime in time, one reasonable approach to
determine the soft lifetime is picking a random time between T-rekey
and T-retrans and subtracting it from the hard lifetime. Here,
T-rekey is the reasonable maximum rekeying margin, and T-retrans is
the amount of time it would take to go through a full retransmission
cycle. T-rekey SHOULD be at least twice as high as T-retrans.

3.7. Dead Peer Detection

In order to determine that a KINK peer has lost its security database
information, KINK peers MUST record the current epoch for which they
have valid SA information for a peer and reflect that epoch in each
AP-REQ and AP-REP message. When a KINK peer creates state for a
given SA, it MUST also record the principal’s epoch. If it discovers

Sakane, et al. Standards Track [Page 10]

RFC 4430 KINK March 2006

on a subsequent message that the principal’s epoch has changed, it
MUST consider all SAs created by that principal as invalid, and take
some action such as tearing those SAs down.

While a KINK peer SHOULD use feedback from routing (in the form of
ICMP messages) as a trigger to check whether or not the peer is still
alive, a KINK peer MUST NOT conclude the peer is dead simply based on
unprotected routing information (said ICMP messages).

IT there is suspicion that a peer may be dead (based on any
information available to the KINK peer, including lack of IPsec
traffic, etc.), the KINK STATUS message SHOULD be used to coerce an
acknowledgement out of the peer. Since nothing is negotiated about
dead peer detection in KINK, each peer can decide its own metric for
"suspicion" and also what timeouts to use before declaring a peer
dead due to lack of response to the STATUS message. This is
desirable, and does not break interoperability.

The STATUS message has a twofold effect. First, it elicits a
cryptographically secured (and replay-protected) response from the
peer, which tells us whether or not the peer is reachable/alive.
Second, it carries the epoch number of the peer, so we know whether
or not the peer has rebooted and lost all state. This is crucial to
the KINK protocol: In IKE, if a peer reboots, we lose all
cryptographic context, and no cryptographically secure communication
is possible without renegotiating keys. In KINK, due to Kerberos
tickets, we can communicate securely with a peer, even iIf the peer
rebooted, as the shared cryptographic key used is carried in the
Kerberos ticket. Thus, active cryptographic communication is not an
indication that the peer has not rebooted and lost all state, and the
epoch is needed.

Assume a Peer A sending a STATUS and a peer B sending the REPLY (see
section 3.4). Peer B MAY assume that the sender is alive, and the
epoch in the STATUS message will indicate whether or not the peer A
has lost state. Peer B MUST acknowledge the STATUS message with a
REPLY message, as described in section 3.4.

The REPLY message will indicate to peer A that the peer is alive, and
the epoch in the REPLY will indicate whether peer B has lost its
state or not. |If peer A does not receive a REPLY message from peer B
in a suitable timeout, peer A MAY send another STATUS message. It is
up to peer A to decide how aggressively to declare peer B dead. The
level of aggressiveness may depend on many factors such as rapid fail
over versus number of messages sent by nodes with large numbers of
SAs.

Sakane, et al. Standards Track [Page 11]

RFC 4430 KINK March 2006

Note that peer B MUST NOT make any inferences about a lack of STATUS
message from peer A. Peer B MAY use a STATUS message from peer A as
an indication of A’s aliveness, but peer B MUST NOT expect another
STATUS message at any time (i.e., dead peer detection is not periodic
keepalives).

Strategies for sending STATUS messages are the following: Peer A may
decide to send a STATUS message only after a prolonged period where
no traffic was sent in either direction over the IPsec SAs with the
peer. Once there is traffic, peer A may want to know if the traffic
is going into a black hole, and send a STATUS message.

Alternatively, peer A may use an idle timer to detect lack of traffic
with the peer, and send STATUS messages in the quiet phase to make
sure the peer is still alive for when traffic needs to finally be
sent.

3.7.1. Coping with Dead User-to-User Peers

When an initiator uses a User-to-User ticket and a responder has lost
its previous TGT, the usual dead peer detection (DPD) mechanism does
not work, because the responder cannot decrypt the ticket with its
new TGT. In this case, the following actions are taken.

o] When the responder receives a KINK command with a User-to-User
ticket that cannot be decrypted with its TGT, it returns a
REPLY with a KINK_TGT_REP payload containing the TGT.

o] When the initiator receives a KINK TGT_REP, it retrieves a new
service ticket with the TGT and retries the command.

This does not directly define a method to detect a dead User-to-User
peer, but to recover from the situation that the responder does not
have an appropriate TGT to decrypt a service ticket sent from the
initiator. After recovery, they can exchange their epochs, and usual
DPD mechanism will detect a dead peer if it really has been dead.

The initiator MUST NOT think the peer has been dead on the receipt of
a KINK_TGT_REP because of two reasons. One is that the message is
not authenticated, and the other is that losing a TGT does not
necessarily mean losing the SA database information. The initiator
SHOULD NOT forget the previous service ticket until the new one is
successfully obtained in order to reduce the cost when a forged
KINK_TGT_REP is received.

Sakane, et al. Standards Track [Page 12]

RFC 4430 KINK March 2006

4. KINK Message Format

All values in KINK are formatted in network byte order (most
significant byte first). The RESERVED fields MUST be set to zero (0)
when a packet is sent. The receiver MUST ignore these fields.

0 1 2 3
01234567890123456789012345678901
T A M S I I N I A N S A S s S

| Type | MjVer |RESRVED] Length |
o o o o +
| Domain of Interpretation (DOI) |
gy gy +
| Transaction ID (XID) |
o T gy +
| NextPayload |A] RESERVED2 | CksumLen |
o Fotm e +
|] |
- A series of payloads -
| |
g gy +
|) |
- Cksum (variable) -
| |
gy g +

Figure 5: Format of a KINK Message
Fields:

o] Type (1 octet) -- The type of this message.

RESERVED 0
CREATE 1
DELETE 2
REPLY 3
GETTGT 4
ACK 5
STATUS 6
RESERVED TO IANA 7 - 127
Private Use 128 - 255

o] MjVer (4 bits) -- Major protocol version number. This MUST be
set to 1.

Sakane, et al. Standards Track [Page 13]

RFC 4430

KINK March 2006

RESRVED (4 bits) -- Reserved and MUST be zero when sent, MUST
be ignored when received.

Length (2 octets) -- Length of the message in octets. It is
not forbidden in KINK that there are unnecessary data after

the message, but the Length field MUST represent the actual

length of the message.

DOl (4 octets) -- The domain of interpretation. All DOIs must
be registered with the IANA in the ISAKMP Domain of
Interpretation section of the isakmp-registry [ISAKMP-REG].
The 1ANA Assigned Number for the Internet IP Security DOI
[IPDOI1] is one (1). This field defines the context of all
sub-payloads in this message. |If sub-payloads have a DOI
field (e.g., Security Association Payload), then the DOl in
that sub-payload MUST be checked against the DOl in this
header, and the values MUST be the same.

XID (4 octets) -- The transaction ID. A KINK transaction is
bound together by a transaction ID, which is created by the
command initiator and replicated in subsequent messages in the
transaction. A transaction is defined as a command, a reply,
and an optional acknowledgement. Transaction IDs are used by
the initiator to discriminate between multiple outstanding
requests to a responder. It is not used for replay protection
because that functionality is provided by Kerberos. The value
of XID is chosen by the initiator and MUST be unique with all
outstanding transactions. XIDs MAY be constructed by using a
monotonic counter or random number generator.

NextPayload (1 octet) -- Indicates the type of the first
payload after the message header.

A, or ACKREQ (1 bit) -- ACK Request. Set to one if the
responder requires an explicit acknowledgement that a REPLY
was received. An initiator MUST NOT set this flag, nor should
a responder except for a REPLY to a CREATE when the optimistic
proposal is chosen.

RESERVED2 (7 bits) -- Reserved and MUST be zero on send, MUST
be ignored by a receiver.

CksumLen (2 octets) -- CksumLen is the length in octets of the
cryptographic checksum of the message. A CksumLen of zero
implies that the message is unauthenticated.

Sakane, et al. Standards Track [Page 14]

RFC 4430

KINK March 2006

Cksum (variable) -- Kerberos keyed checksum over the entire
message excluding the Cksum field itself. When any padding
bytes are required between the last payload and the Cksum
field, they MUST be included in the calculation. This field
MUST always be present whenever a key is available via an
AP-REQ or AP-REP payload. The key used MUST be the session
key in the ticket. When a key is not available, this field is
not present, and the CksumLen Ffield is set to zero. The
content of this field is the output of the Kerberos 5 get_mic
function [KCRYPTO]. The get mic function used is specified by
a checksum type, which is a "required checksum mechanism™ of
the etype for the Kerberos session key in the Kerberos ticket.
IT the checksum type is not a keyed algorithm, the message
MUST be rejected.

To compute the checksum, the CksumLen field is zeroed out and
the Length field is filled with the total packet length
without the checksum. Then, the packet is passed to the
get_mic function and its output is appended to the packet.

Any KINK padding after the Cksum field is not allowed, except
the Kerberos internal one, which may be included in the output
of the get_mic function. Finally, the CksumLen field is
filled with the checksum length and the Length field is filled
with the total packet length including the checksum.

To verify the checksum, a length-without-checksum is
calculated from the value of Length field, subtracting the
CksumLen. The Length field is filled with the length-
without-checksum value and the CksumLen field is zeroed out.
Then, the packet without checksum (offset from 0 to length-
without-checksum minus 1 of the received packet) and the
checksum (offset from length-without-checksum to the last) are
passed to the verify_mic function. If verification fails, the
message MUST be dropped.

The KINK header is followed immediately by a series of
Type/Length/Value fields, defined in section 4.2.

4_.1. KINK Alignment Rules

KINK has the following rules regarding alignment and padding:

(0]

All length fields MUST reflect the actual number of octets in
the structure; i.e., they do not account for padding bytes
required by KINK alignments.

KINK headers, payloads, and the Cksum field MUST be aligned on
4-octet boundaries.

Sakane, et al. Standards Track [Page 15]

RFC 4430 KINK March 2006

o] Variable length Ffields (except the Cksum field) MUST always
start immediately after the last octet of the previous field.
That i1s, they are not alighed to 4-octet boundaries.

4_2._. KINK Payloads

Immediately following the header, there is a list of
Type/Length/Value (TLV) payloads. There can be any number of
payloads following the header. Each payload MUST begin with a
payload header. Each payload header is built on the generic payload
header. Any data immediately follows the generic header. Payloads
are all implicitly aligned to 4-octet boundaries, though the payload
length field MUST accurately reflect the actual number of octets in
the payload.

0 1 2 3
01234567890123456789012345678901
o o o o +
| Next Payload | RESERVED | Payload Length |
Sy Sy Sy Sy +
| value (variable) |
o~ o~ o~ o~ +

Figure 6: Format of a KINK Payload
Fields:

o] Next Payload (1 octet) -- The type of the next payload.

NextPayload Value
KINK_DONE 0
KINK_AP_REQ 1
KINK_AP_REP 2
KINK_KRB_ERROR 3
KINK_TGT_REQ 4
KINK_TGT_REP 5
KINK_1SAKMP 6
KINK_ENCRYPT 7
KINK_ERROR 8
RESERVED TO IANA 9 - 127
Private Use 128 - 255

Next Payload type KINK_DONE denotes that the current payload
is the final payload in the message.

o] RESERVED (1 octet) -- Reserved and MUST be set to zero by a
sender, MUST be ignored by a receiver.

Sakane, et al. Standards Track [Page 16]

RFC 4430 KINK March 2006

o] Payload Length (2 octets) -- The length of this payload,
including the type and length fields.

o] Value (variable) -- This value of this field depends on the
type.

4.2.1. KINK_AP_REQ Payload

The KINK_AP_REQ payload relays a Kerberos AP-REQ to the responder.
The AP-REQ MUST request mutual authentication.

This document does not specify how to generate the principal name.
That is, complete principal names may be stored in local policy,
Fully Qualified Domain Names (FQDNs) may be converted to principal
names, IP addresses may be converted to principal names by secure
name services, etc., but see the First paragraph of the Security
Considerations section.

IT the peer’s principal name for the KINK service is generated from
an FQDN, the principal name, which the initiator starts from, will be
"kink/fqdn@REALM"; where "kink"™ is a literal string for the KINK
IPsec service, "fgdn" is the fully qualified domain name of the
service host, and "REALM"™ is the Kerberos realm of the service. A
principal name is case sensitive, and "fqdn" part MUST be lowercase
as described in [KERBEROS].

The value field of this payload has the following format:

0 1 2 3
01234567890123456789012345678901
oo oo oo oo +
| Next Payload | RESERVED | Payload Length |
TR Fom e TR S TR +
| EPOCH |
e +
I I
- AP-REQ -
| |
- +

Figure 7: KINK_AP_REQ Payload
Fields:

o] Next Payload, RESERVED, Payload Length -- Defined in the
beginning of this section.

Sakane, et al. Standards Track [Page 17]

RFC 4430

4.2.2. KI

KINK March 2006

EPOCH -- The absolute time at which the creator of the AP-REQ
has valid SA information. Typically, this is when the KINK
keying daemon started if it does not retain SA information
across restarts. The value in this field is the least
significant 4 octets of so-called POSIX time, which is the
elapsed seconds (but without counting leap seconds) from
1970-01-01T00:00:00 UTC. For example, 2038-01-19T03:14:07 UTC
is represented as OxX7fFFFfff.

AP-REQ -- The value field of this payload contains a raw
Kerberos AP-REQ.

NK_AP_REP Payload

The KINK_AP_REP payload relays a Kerberos AP-REP to the initiator.

The AP-REP MUST be checked for freshness as described in [KERBEROS].
The value field of this payload has the following format:

0 1 2 3
01234567890123456789012345678901
o~ o~ o~ o~ +
| Next Payload | RESERVED | Payload Length |
o o o o +
| EPOCH |
ey +
| |
- AP-REP -
| |
o +
Figure 8: KINK_AP_REP Payload

Fields:
o] Next Payload, RESERVED, Payload Length -- Defined in the
beginning of this section.
o] EPOCH -- The absolute time at which the creator of the AP-REP

has valid SA information. Typically, this is when the KINK
keying daemon started if it does not retain SA information
across restarts. The value in this field is the least
significant 4 octets of so-called POSIX time, which is the
elapsed seconds (but without counting leap seconds) from
1970-01-01T00:00:00 UTC. For example, 2038-01-19T03:14:07 UTC
is represented as OxX7FFFffff.

Sakane, et al. Standards Track [Page 18]

RFC 4430 KINK March 2006

o] AP-REP -- The value field of this payload contains a raw
Kerberos AP-REP.

4.2.3. KINK_KRB_ERROR Payload

The KINK_KRB_ERROR payload relays Kerberos type errors back to the
initiator. The initiator MUST be prepared to receive any valid
Kerberos error type [KERBEROS].

KINK implementations SHOULD make use of a KINK Cksum field when
returning KINK_KRB_ERROR and the appropriate service key is
available. Especially in the case of clock skew errors, protecting
the error at the server creates a better user experience because it
does not require clocks to be synchronized. However, many Kerberos
implementations do not make It easy to obtain the session key 1in
order to protect error packets. For unauthenticated Kerberos errors,
the initiator MAY choose to act on them, but SHOULD take precautions
against make-work kinds of attacks.

Note that KINK does not make use of the text or e _data field of the
Kerberos error message, though a compliant KINK implementation MUST
be prepared to receive them and MAY log them.

The value field of this payload has the following format:

0] 1 2 3
01234567890123456789012345678901
oo oo oo oo +
| Next Payload | RESERVED | Payload Length |
Fo——_————— Fo——_————— Fo——_————— Fo——_————— +
| |
- KRB-ERROR -
| |
M +

Figure 9: KINK KRB _ERROR Payload

o] Next Payload, RESERVED, Payload Length -- Defined in the
beginning of this section.

o] KRB-ERROR -- The value field of this payload contains a raw
Kerberos KRB-ERROR.

Sakane, et al. Standards Track [Page 19]

RFC 4

4.2.4

Th
in

Th

+

+

b

430 KINK March 2006

. KINK_TGT_REQ Payload

e KINK_TGT_REQ payload provides a means to get a TGT from the peer

order to obtain a User-to-User service ticket from the KDC.
e value field of this payload has the following format:

0 1 2 3
01234567890123456789012345678901

--------------- ey Sy Sy USRI

Next Payload | RESERVED | Payload Length
——————————————— g

PrincName (variable)

Figure 10: KINK_TGT_REQ Payload

o] Next Payload, RESERVED, Payload Length -- Defined in the
beginning of this section.

o] PrincName -- The name of the principal that the initiator

wants to communicate with. It is assumed that the initiator

knows the responder’s principal name (including the realm

name) in the same way as the non-User-to-User case. The TGT

returned MUST NOT be an inter-realm TGT and its cname and
crealm MUST match the requested principal name, so that the

initiator can rendezvous with the responder at the responder’s

realm.

PrincName values are octet string representations of a

principal and realm name formatted just like the octet string

used in the "NAME"™ component of Generic Security Service
Application Program Interface (GSS-APl) [RFC2743] exported
name token for the Kerberos V5 GSS-API mechanism [RFC1964].
See RFC 1964, section 2.1.3.

the responder is not the requested principal and is unable to get

a TGT for the name, it MAY return a KRB_AP_ERR NOT _US. If the
administrative policy prohibits returning a TGT, it MAY return a

Kl

Sakane, et al. Standards Track [Page 20]

NK_U2UDENIED.

RFC 4430 KINK March 2006

4.2.5. KINK_TGT_REP Payload

The value field of this payload contains the TGT requested in a
previous KINK_TGT_REQ payload of a GETTGT command.

0 1 2 3
01234567890123456789012345678901
R R R R +
| Next Payload | RESERVED | Payload Length |
o~ o~ o~ o~ +

Figure 11: KINK_TGT_REP Payload

Fields:

o] Next Payload, RESERVED, Payload Length -- Defined in the
beginning of this section.

o] TGT -- The Distinguished Encoding Rules (DER)-encoded TGT of
the responder.

4.2.6. KINK_ISAKMP Payload

The value field of this payload has the following format:

0 1 2 3
01234567890123456789012345678901
R R R R +
| Next Payload | RESERVED | Payload Length |
o~ Fo——_ Fo——_ o~ o~ +
| InnerNextPload] QMMaj | QMMin | RESERVED |
o Feom——_—— Feom——_—— o o +
| Quick Mode Payloads (variable) |
Fo e T R R +

Figure 12: KINK_ISAKMP Payload
Fields:
o] Next Payload, RESERVED, Payload Length -- Defined in the
beginning of this section.
o] InnerNextPload -- First payload type of the