[image: image1.wmf]User’s Manual

Version 2.6

February 1999

Liability, Warranty and Trademark

I, the Author, make no warranty of any kind, expressed or implied, including but not limited to any warranties of fitness for a particular purpose. In no event shall the authors be liable for any incidental or consequential damage arising from the use of, or inability to use, these programs. I hereby deny any liability to the maximum extent permitted by law.

You are fully responsible for everything you are doing with these programs!

Power Render and WordUp Graphics Toolkit are trademarks of Egerter Software.

3D Studio is a trademark of Autodesk Inc.

All other trademarks are the property of their respective owners.

Copyright (1999 Egerter Software

Index

2Liability, Warranty and Trademark

Index
3
1.0 Introduction
6
1.1 System Requirements
6
1.2 Installing Power Render
7
1.3 Overview
7
1.31 General Comments
7
1.32 Power Render Terminology
7
1.4 Coordinate Systems
9
1.41 Object Space (3D)
9
1.42 World Space (3D)
9
1.43 Camera Space (3D)
10
1.44 Viewport Space (2D)
10
1.45 Device Space (2D)
10
2.0 Initializing Power Render
11
3.0 Device Detection and Initialization
12
4.0 Reserving Space for Rendering Data
14
5.0 Setting the Video Mode
15
6.0 Viewports
16
7.0 Loading and Building Objects
17
7.1 Importing from 3D Studio
17
7.1.1 Keyframing
17
7.1.2 Material Colors
18
7.1.3 Textures
18
7.2 Importing from Lightwave
18
7.2.1 Importing Single Objects
18
7.2.2 Materials
19
7.2.3 Textures
19
7.2.4 Importing Scenes and Keyframe Data
19
7.2.5 Keyframing
19
7.2.6 Using PRO files instead of LWO files
20
8.0 Creating Entities
21
9.0 Cameras
22
10.0 Lights
24
11.0 Textures
25
12.0 Rendering a Scene
26
13.0 Animating Entities
27
13.1 Morphing Animation
27
13.2 Keyframe Animation
28
14.0 3D Sprites
30
14.1 Introduction
30
14.2 Making a sprite
30
14.3 Animating Sprites
30
15.0 Using the Terrain Engine
32
15.1 Introduction
32
15.2 Setting up the Tiles
32
15.3 Creating the Terrain Object
33
15.4 Loading the Terrain Data
33
15.5 Rendering the Terrain
33
15.6 Morphing Heighfields
34
16.0 Particle System
35
16.1 Particles
35
16.2 Emitters
35
16.3 User Callbacks
35
16.4 Templates and Lists
36
16.5 Using the Particle System
36
17.0 Power Render Collision Detection
38
17.1 Boxes
38
17.2 Planes
39
17.3 Polytopes
39
18.0 Direct3D Notes
41
18.1 Initializing Direct3D
41
18.2 Rules to Remember about Direct3D
41
19.0 OpenGL Notes
42
20.0 Power Render Utilities
43
20.1 PRO File Utilities
44
20.1.1 3DS2PRO
44
20.1.2 DUMPPRO
44
20.1.3 JOINPRO
45
20.1.4 UNIFY
45
20.1.5 OBJFLAG
45
20.1.6 SAVEMESH
46
20.1.7 LOADMESH
46
20.1.8 LWO2PRO
46
20.1.9 CENTPRO
46
20.1.10 LWS2PRO
47
20.1.11 PHONG
47
20.1.12 MAKESPR
47
20.1.13 SWAPSEG
48
20.1.14 SETRGB
48
20.1.15 PRLIGHT
49
20.2 Texture Utilities
51
20.2.1 TEXSKIN
51
20.2.2 TEXSET
54
20.2.3 SPRMIP
55
20.3 Material Utilities
56
20.3.1 EDITMAT
56
20.3.2 MAKETAB
56
20.4 Terrain Utilities
57
20.4.1 PIC2WMP
57
20.5 Object Viewers
58
20.5.1 PRView Pro
58
20.1.1 SCNEDIT
59

1.0 Introduction

Welcome to Power Render, a 3D rendering API for PC's running DOS and Microsoft Windows 95/NT.

Since the beginning of computer graphics, there has been much effort put into 3 dimensional images. The ability to move around and interact with a virtual world is a great experience compared to the dull 2D desktops that many people work with today. Power Render is a development tool that will aid you in creating virtual worlds and 3D objects with stunning realism.

The trial version of Power Render version has been given out to the public for personal evaluation. If you wish to continue using Power Render after one month of evaluation, you must license the software. The licensed version of Power Render will remove the startup logo from your programs and utilities, and remove the 1000 triangle rendering limit.

3Dfx Interactive has been nice enough to provide the Glide libraries for programmers, however you still need to know about 3D graphics techniques to use it. Power Render gives you the rest of the routines needed for 3D graphics. In addition to 3Dfx chip support, fast software rendering routines are provided which allow you to switch between hardware and software rendering with little changes to your code.

This release also supports Direct3D and OpenGL with or without 3D Hardware. Software Rendering through Direct3D and OpenGL is supported however it is slow and not recommended.

All comments and questions should be directed to powerrender@home.com. Visit our web site at http://www.egerter.com for news and updates.

1.1 System Requirements

· Pentium CPU

· SVGA video card with 640x480x256 support

· Two button mouse

· 8 megabytes of memory recommended

· Watcom C/C++ for 32 bit DOS applications

· Watcom C/C++ or Microsoft Visual C/C++ for Windows 9x applications

· DirectX 5 or DirectX6 for Direct3D support

· A 3D card optional. A card using a 3Dfx chip for Glide libraries or any 3D card with Direct3D or OpenGL support, with at least 4 megs of memory capable of zbuffering and texture mapping is suitable.

· 15 megs of Hard Drive space

· A 3D modelling program (one of 3D Studio, 3D Studio Max, Lightwave)

1.2 Installing Power Render

In order to compile the examples and write new applications with Power Render, you need a compiler. For DOS applications, Watcom C/C++ (version 10.6 and up) is supported.

For Win32 applications, Watcom C/C++ (version 10.6 and up) and Microsoft Visual C/C++ (tested with v5.0 and v6.0) are supported.

Make sure you have unzipped this archive with the -d option to recreate the original directory structure.

After unzipping, you MUST include the pr\bin or pr\winbin (for Win32 versions) directory in the path statement of your autoexec.bat file. This will allow you to run the utilities from any directory.

For detailed instruction about recompiling the utilities and examples, read the install.txt file in the main \pr directory.

1.3 Overview

1.31 General Comments

Power Render 2.5 adds support for Direct3D, which is part of the DirectX libraries from Microsoft. This will allow you to create applications for 3D hardware which supports Direct3D.

1.32 Power Render Terminology

Several terms are used throughout the documentation and the library itself. It is important that you understand each of the following terms and how they relate to a Power Render application.

Name
Description

Vertex
A point in 3D space, defined with (X,Y,Z) coordinates

Face
A planar surface made by connecting vertices. All faces in Power Render are triangles. A face has a material associated with it, which tells the renderer how to draw it.

Object
Defines a 3D shape. It can be divided into smaller pieces called segments. An object must have at least one segment. If an object is rotated, translated, or scaled, the segments relating to the object will change as well.

Segment
A set of vertices and faces. Each segment can be rotated, translated, and scaled independently of other segments. For example, these represent the limbs of a person, while an object would be the collection of all limbs related to that person.

Entity
An instance of an object in the world. An entity contains the orientation of the object and all of its segments. The entity contains a pointer to an object, so if you change one object, all entities using the object will reflect the change. For example, if you make an object representing a tank, then you can create multiple instances of the tank with several entities. The actual mesh data is only stored once (inside the object). Entities are what you tell Power Render to draw.

Device
The display device used to show the images. The devices currently supported are:

DEVICE_VGA - Standard 320x200x8bit VGA mode

DEVICE_SVGA – VESA 1.2, or VESA 2.0 modes with a linear frame buffer, or DirectDraw under Windows95

DEVICE_3DFX - A 3D accelerated card using 3Dfx’s Voodoo graphics chipset.

DEVICE_D3D – Direct3D (most 3D cards)

Viewport
A rectangular region on the display device where a rendered image is shown.

Camera
A viewing position from within the 3D world. A camera contains the field of view, and far and near clipping plane information. A camera can be rotated like an entity, or it can possess source and target locations for pointing towards another location.

Light
Provides illumination for shaded rendering methods. A light can have either finite or infinite distance. A DIRECTIONAL_LIGHT has a source location and infinite distance, while a POINT_LIGHT has a source location, strength, and falloff attributes. A point light illuminates in a spherical shape around the center, with the center being the brightest location.

Texture
Used to add detail to a face. Any bitmap can be used as a texture.

Material
Defines how a face will look when rendered. Material attributes include color, texture, which sides are visible (front, back, or both), mip mapping information, environment mapping information, and the rendering method (flat, gouraud, textured, etc).

Orientation
Defines how an entity or camera is positioned in the world. It has translation, rotation, and scaling information.

Vector
A line in 3D space. If the length of the line is 1, it is called a normal vector. Vectors are used to define directions, such as the direction between a light and an entity.

Matrix
A matrix is an array of floating point numbers used to define 3D transformations. All matrices in Power Render are 4x4, although they are defined as a single array of numbers with indices 0-15.

Block
A rectangular bitmap that is captured from the video buffer and stored in system memory. It uses the format of the video buffer.

Palette
An array of colors used in 8 bit modes.

Screen
Either a block used as a drawing surface or the area in video memory used to draw on.

1.4 Coordinate Systems

Power Render uses a left handed coordinate system. This means the positive z-axis points away from the viewer, as shown in the following illustration:

[image: image2.wmf]
In a left-handed coordinate system, rotations occur clockwise around any axis that is pointed at the viewer.

1.41 Object Space (3D)

Each object is defined using object or local coordinates. Usually the object is centered around (0,0,0). In the case of segments which require a different pivot coordinate, the segment may be centered around some other coordinate in object space.

1.42 World Space (3D)

Power Render uses a fixed world coordinate system, where (0,0,0) is the center of the world. All entities have a position in world space.
1.43 Camera Space (3D)

Before an entity is rendered, it must be transformed to camera space. Camera space is relative to the current camera being used. A positive Z value means the coordinate is in front of the camera.
1.44 Viewport Space (2D)

Viewport space is relative to the top left corner of the viewport’s window. (0,0) is the top left corner of the viewport.
1.45 Device Space (2D)

While viewport space refers to coordinates inside a rendering window, device space refers to the entire display on the monitor. (0,0) is the top left corner of the screen. The maximum coordinates depend on the screen resolution of the display device.

2.0 Initializing Power Render

Power Render uses a display list to keep track of the triangles rendered during each frame. The PR_Initialize routine is used to tell the maximum number of triangles that can be stored in the list. When the PR_NewFrame routines is called, this list is emptied. A program can render entities and

the list will be grow until finally the PR_RenderFrame function is called to draw the triangles.

Software rendering stores every triangle in the list, until the PR_RenderFrame is called. At this time, the list is sorted by the z coordinates using a fast radix sort.

Hardware rendering uses this list to store alpha blended triangles. If a triangle requires alpha blending, it is stored in the list and later they are sorted and drawn in back to front order. Triangles that do not require alpha blending are drawn immediately and only use zbuffering for sorting.

3.0 Device Detection and Initialization

A device is a piece of video hardware that is used to display the final rendered images. This can be a 2D graphics board, or a 3D accelerated board. The program must call detection and initialization routines for the device it wants to use. The devices are numbered, and can be identified with the following defines:

#define DEVICE_ANY 0

#define DEVICE_NONE 0

#define DEVICE_VGA 1

#define DEVICE_SVGA 2

#define DEVICE_3DFX 4

#define DEVICE_D3D 6

#define DEVICE_GL 7

The detection routines are called PR_DetectVGA, PR_DetectSVGA, and so on. If the device is not found, the routine returns DEVICE_NONE. Notice this is the same value as DEVICE_ANY. This allows you to build a series of detection routines that try to find the devices in the order you want. You will probably want to check for native 3D accelerated boards first, then try software rendering if they are not found.

Since Power Render can be linked with support for individual 3D hardware, you must use preprocessor defines to tell which devices are going to be available. For example if you don't have the 3Dfx Glide libraries, you cannot call the PR_Detect3Dfx routine because it will reference Glide functions. This will cause undefined symbols when you link the program.

Power Render has a number of preprocessor defines for controlling what detection routines will be called. The defines used are:

Preprocessor define
Used for:

__3DFX__
This will use DosGlide functions

MSGLIDE or

WTGLIDE
This will use WinGLide functions under Microsoft C or Watcom C

MSDD or

WTDD
These stand for Microsoft C DirectDraw, and Watcom DirectDraw.

When the PR_Initialize routine is called, a dialog box will appear which allows you to select the Direct3D driver and device. If the ramp driver is selected, Power Render will use its own 8 bit rendering routines.

MSGL or

WTGL
These stand for Microsoft C OpenGL, and Watcom OpenGL.

The initialize routines are called PR_InitializeVGA, PR_InitializeSVGA, PR_InitializeD3D, PR_InitializeGL, and PR_Initialize3Dfx. These routines will set up pointers to the functions used by the device. Each device has a unique function to render a triangle for example. When you call this function, it will call a different function depending on the device initialized. This means only 1 device can be initialized at a given time.

If you do not care about multiple device support, you can simply ignore the preprocessor defines and call the appropriate detection and initialization routines for that device. However, if you want to support more devices or need others to compile your code with different devices, you should follow the code from the examples.

Power Render now has an include file called “prdev.h”, which contains a few common routines for setting up the devices. You should now call ChooseDevice, PR_Initialize, and then InitializeDevices to properly initialize a device for any platform. The actual device used is determined by the preprocessor defines listed above. Since the prdev.h file contains actual routines, it must only be included in the module where the initialization takes place.

4.0 Reserving Space for Rendering Data

Power Render maintains an array of textures, tables, and materials. These are dynamically allocated at runtime so you must tell how many elements will be required in each array. You can do this by calling the PR_AllocMaterials, PR_AllocTextures, and PR_AllocShadeTables routines.

You should pass each function the maximum number of elements you'll expect to use. If you try to use more elements than you allocated space for, the program will either crash or not behave as expected. The size of these arrays are only limited by the amount of memory you have.

5.0 Setting the Video Mode

When a device detection routine is successful, a list of available video modes is created. This list is stored in the PR_VideoModes array. Your program can list the video modes as part of a setup screen and allow the user to pick one. The video modes are sorted from smallest to largest. Picking the smallest mode or using 640x480 as the default mode will ensure the best compatibility. You should remember that some high resolution modes might be supported by the video board, but the monitor may not be able to display them.

The PR_SetMode routine requires width, height, and refresh rate parameters. The refresh rate is not used. Modes under DirectX automatically use the correct refresh rate regardless of the value you pass to PR_SetMode.

The following code will get the width and height of the first video mode in the list, and then attempt to set the mode with these dimensions.

vwidth = PR_VideoModes[0].width;

vheight = PR_VideoModes[0].height;

PR_SetMode (vwidth, vheight, 60);

6.0 Viewports

A viewport is a rectangular region on the screen where the 3D rendering will be shown. A PR_VIEWPORT structure is used to describe this region. The PR_OpenViewport function is used to initialize a viewport, and describes the four corners of the region used. For example, to initialize a viewport using the full screen, assuming the vwidth and vheight variables hold the screen dimensions:

PR_OpenViewport (&viewport, 0, 0, vwidth-1, vheight-1, VIEW_PLAIN);

The last parameter is a flag, which is now obsolete. You should always use the VIEW_PLAIN.

Since multiple viewports can be initialized, the PR_SetViewport routine is used to tell Power Render which one is active. A PR_VIEWPORT structure called active_viewport holds information about the last viewport passed to PR_SetViewport. You may also need to call PRGFX_Clip so the 2D functions will be clipped to the active viewport. For example:

PR_SetViewport (&viewport);

PRGFX_Clip (active_viewport.topx,

 active_viewport.topy,

 active_viewport.bottomx,

 active_viewport.bottomy);

7.0 Loading and Building Objects

Power Render assumes that real applications will be loading a 3D mesh from a file rather than building it from scratch through a bunch of code. You can build simple objects by settings up the structures and filling them with data yourself, however for detailed models with hundreds of triangles, keyframes, and hierarchy, this is not practical. Power Render includes importing utilities for 3D Studio (.3DS) and Lightwave (.LWO and .LWS) files. Other formats can be used if you know the specifications for them and you can fill in the structures yourself. Example 10 contains a series of macros that help you build an object from scratch. This will allow you to build objects without knowing the internal data structures used by Power Render.

Loading from 3D Studio or Lightwave files directly from your program is possible but not recommended. Power Render uses a proprietary file format called PRO (Power Render Object). All of the Power Render utilities use this format. The PRO format uses the same data structures used by the Power Render library, which means it loads faster than other formats, and contains information specific to the renderer. Using the PRO format will allow you to manipulate objects in many ways with the utilities included. You will be able to apply textures, control mipmapping and environment mapping, edit material properties and more, without the need to recompile any code.

The objects are stored in a PR_OBJECT structure. This contains the actual list of vertices and faces used by the object. The PR_LoadPRO function will load a PRO file into a PR_OBJECT structure. Any materials, textures, and shadetables used by this object are automatically loaded. If one of these elements already exists, it will not be loaded twice. For example, if a single texture image is used by several PRO files, only 1 copy will be loaded into memory. The same applies to shadetables and materials. You must make sure that materials have unique names so the system can correctly determine if it has already been loaded. If you load two PRO files that use the same material name, but the properties (such as color) are different, the first one loaded will be used.

The following section is a guide on how to import from Lightwave and 3D Studio successfully.

7.1 Importing from 3D Studio

The 3DS2PRO utility will convert a .3DS file to the Power Render Object (PRO) format. Each object in the 3DS file will be treated as a segment in the PRO format. A single "master" parent object is not required. Each segment can be separate from the others, or part of a hierarchy. The keyframing information for the objects and cameras will be converted and stored in the PRO file. Dummy objects are supported in versions 2.5 and later. Multiple instances of an object are not supported.

7.1.1 Keyframing

Object keyframes must contain only transformation, scaling, and rotation keys. Other advanced features such as morphing are not supported.

Camera keyframes are fully supported, including position, target, FOV, and roll values. The 3DS file must contain ONLY ONE camera. Since Power Render does not allow unique keys for the target, FOV and roll, you must make sure each parameter has the same key numbers. For example, if you have position keys at frames 1, 10, 20, and so on, you must have target, FOV and roll keys at 1, 10, 20, etc. If you have any keys that do not match the frame numbers of the others, the converter will fail.

7.1.2 Material Colors

Material colors are taken from the diffuse component in the material settings. If this color is not set, the object will be completely black if you do not apply a texture. The diffuse color is sometimes left black if the object is meant to use texture in 3D Studio. The alpha value of the materials is not imported.

7.1.3 Textures

Texture coordinates can be imported if the texture is not tiled or mirrored in any way. By default, the converter uses non-wrapping texture to support textures of any size. If you are using a 3D card, any sized texture can be wrapped and wrapping texture coordinate will work. However, if you are using software rendering, you must use a 256x256 texture for textures which are wrapped or mirrored. Since the converter creates non-wrapping textures in the material, you must use the EDITMAT utility and change the rendering method before attempting to view the PRO file.

3D Studio MAX requires a special 3DS export plugin to correctly export the texture coordinates.

7.2 Importing from Lightwave

7.2.1 Importing Single Objects

The LWO2PRO utility will convert a .LWO file to the Power Render Object (PRO) format. The resulting PRO file will contain a single segment.

7.2.2 Materials

Material colors are taken from the diffuse component. You must define new materials and apply them to the polygons instead of using the default material.

7.2.3 Textures

Textures are now supported in version 2.6.
7.2.4 Importing Scenes and Keyframe Data

The LWS2PRO utility will convert a .LWS file to the Power Render Object (PRO) format. Each object in the LWS scene will be treated as a segment in the PRO format. A single "master" parent object is not required. Each segment can be separate from the others, or part of a hierarchy. The keyframing information for the objects and cameras will be converted and stored in the PRO file.

7.2.5 Keyframing

Object keyframes must contain only transformation, scaling, and rotation keys. Other advanced features such as bones are not supported.

Camera keyframes are supported by position and target values. Cameras must aim at a specific object, and not rely on the camera's X/Y rotation values. Camera rolling is controlled by the Z rotation. You can use dummy objects if you want the camera to point at a location between objects. Cameras attached to objects are not supported.

7.2.6 Using PRO files instead of LWO files

It is useful to load PRO file in place of LWO files when reading the scene file. This allows you to texture the PRO files with Power Render's utilities, and merge the individual pieces into a single file with the keyframing information. This helpful when a single textured object is used more than once in the scene, or when several scenes make use of the same objects. To use PRO files instead of LWO file, add the -p switch when you run LWS2PRO. Remember to use the same scale factor when you use LWO2PRO and LWS2PRO. A scale of around 200 is recommend for Lightwave Objects, if they originally fill the default editing area.

8.0 Creating Entities

An object just contains the mesh and face information describing an object. To actually render this object you also need to tell where it exists in the world, along the with scale and rotation. This information is stored in a PR_ENTITY structure. An entity is an instance of an object within

the 3D world. Multiple entities can use the same object description.

An instance is initialized using the PR_CreateEntity routine. It returns a pointer to a new entity which you can store in a variable or array.

A single scene can be composed of several entities. For example you can keep dummy objects used for camera movement in one entity, a static background mesh in another, and some more for animated characters.

9.0 Cameras

Cameras are used to describe what will be shown in the viewport. A camera has a location and direction in the 3D world. The direction can be specified by a specific target location, or by rotation values. Internally, there is always a target location. If rotation values are used, a 3D vector is transformed by the camera rotation matrix and this is used as the target.

Cameras can be stored in a linked list. The first camera in the list can be retrieved by calling the PR_GetFirstCamera function. New cameras can be added to the list using the PR_AddCamera function. This allows you to use the PR_FindClosestCamera routine. For example, if you have a

race track with several TV cameras sitting around it, this function will return the closest one and you can aim it at a vehicle going around the track.

If a camera is loaded from a PRO file, it will be added to this list. It must then be attached to the entity it was loaded from. Since this type of camera may contain keyframing information, it must know which segment to aim at. You might have multiple instances of the object, so the PR_AttachCameraEntity function will tell it which entity contains the segment it should use for a target.

You can also initialize a camera yourself, using the PR_InitializeCamera routine. The camera mode determines if you are using rotation values or a specific target location. This can be set using the PR_SetCameraMode routine with the CAMFLAG_AIM_TARGET or CAMFLAG_ANGLE_BASED values.

The PR_PositionCameraSource and PR_PositionCameraTarget routines are used to place the source and target locations. The target location only applies if you are using the CAMFLAG_AIM_TARGET flag.

Multiple cameras can exist, so the PR_SetActiveCamera routine is used to tell Power Render which one will be used for the next frame. You must call this routine whenever any attributes of the camera are changed, including position.

The camera controls how the rendered output will appear. Properties include viewport size, aspect ratio, field of view, and clipping distances. The aspect ratio is the ratio of the viewport width over the height. Power Render does not calculate this itself, and uses 1.6 as a default. This is the aspect ratio for a 320x200 or 640x400 window. You can change this by accessing the aspect_ratio field of the camera structure.

The field of view is stored in radians. The default value is Pi/3, or 60 degrees. You can change this value by accessing the fov field of the camera structure. Pi (180 degrees) is the maximum field of view possible.

The near and far clipping values control how far you can see into the horizon. They must range between 1.0 and 65535.0. These are the default values. Lowering the far clipping distance can improve the speed since entities that lie completely behind this plane are not transformed or rendered. You can change these values by accessing the nearclip and farclip fields of the camera structure.

10.0 Lights

Lights are stored in a structure call PR_LIGHTLIST. You can use any number of light lists in your program. To allocate a light list, use the PR_AllocLights command. In addition to your own lights, you must also allocate a list and store it in the scenelights variable. This contains the maximum number of lights present during the rendering of a frame.

When the PR_NewFrame function is called, the scenelights list is emptied. New lights are added to the scene by the PR_TransformLights routine, or if they are attached to an entity that is rendered. It is recommended that you keep the lights in a list and maintain them yourself instead of attaching them to objects. Objects with lights should be rendered first so subsequent entities will be lit by these lights.

There is no limit to the number of lights you can use in a scene, however you should set reasonable limits since too many will slow down the program.

11.0 Textures

Most textures used by Power Render are 8 bit images. When using software rendering, all textures that are used in the same scene must share a common palette. You should design your textures with this in mind. You can also load 3DF texture which are specific to 3Dfx cards.

When using 3D hardware, textures can be stored in different formats. The textures are still loaded from 8 bit images, however they can be converted to other bit depths as they are loaded into memory. The PR_SetTextureFormat routine is used to set what format the textures will be converted to. Each texture can use a different format simply by calling this function before it is loaded. You should note that Direct3D chooses the closest format supported by the 3D device, so the format you set may not be the actual format used.

The formats available are:

TEXTURE_RGB_565

(16 bit RGB)

TEXTURE_ARGB_1555
(16 bit RGB with 1 alpha bit)

TEXTURE_P_8

(Palettized 8 bit)

TEXTURE_RGB_332

(8 bit RGB)

TEXTURE_ARGB_8332
(8 bit RGB with another 8 bits of alpha)

TEXTURE_ARGB_4444
(16 bit alpha+RGB)

TEXTURE_AP_88

(Palettized 8 bit with another 8 bits of alpha)

There are also two standard types called TEXTURE_NORMAL which is the same as TEXTURE_RGB_565, and TEXTURE_XRAY which is the same as TEXTURE_ARGB_1555.

If a format that uses alpha bit(s) is selected, the completely black color is treated as transparent. The edges around regions of black space are outlined so that bilinear filtered sprites do not have black outlines around them. Without this outline, bilinear filtering would cause the edges to blend towards the black color.

Palettized formats may be better than using the 16 bit RGB format, since the amount of texture memory is reduced. However, under Direct3D some cards may slow down because it has to download a new palette each time a new texture is used.

Using paletted textures under Glide can be slower than using non-paletted texture since it has to download a new palette to the card for each image. Power Render automatically determines if two palettes are the same when loading a new texture. This reduces the number of times it has to download a new palette, since it knows if the selected texture used the same palette as the previous one.

Texture managent is handled internally by Power Render. Any number of textures can be loaded even if they do not all fit in the 3D card's texture memory. When a texture is required for rendering but is not in the texture cache, a least recently used algorithm determines which texture should be swapped out.

12.0 Rendering a Scene

Power Render does not include an entity list. You must explicitly tell what entities to render and when. This allows you to build your own routine that controls the entities. With 3D hardware this can lead to faster frame rates, since you can mix artificial intelligence or other code between rendering calls. While the card is rendering triangles, your code can be calculating the next frame.

At the beginning of a new frame, you must call the PR_NewFrame function. Each entity must be transformed with the PR_TransformEntity routine, and rendered with the PR_RenderEntity routine. The transformed vertex data exists in the PR_OBJECT structure, so you must not transform two entities that share an object description before rendering the first one. After all entities have been rendered, call the PR_RenderFrame function.

Under Direct3D, no 2D graphics functions can be called between a PR_NewFrame and PR_RenderFrame pair. Two exceptions to this are the PRGFX_ResizeTexture and PRGFX_PutTexture routines, which use triangles to draw a bitmap. Direct3D also requires that only one PR_NewFrame and PR_RenderFrame pair is used for a frame, in order to correctly sort the polygons on some 3D cards.

13.0 Animating Entities

There are two ways of animating a model with Power Render. The first method is vertex morphing, or vertex tweening. The second method is keyframe animation.

13.1 Morphing Animation

Morphing works by modifying the vertex positions of a model. Usually a model has a single list of vertices which define the shape. A morphing object has two or more vertex lists which define the model in different positions or poses. Each vertex list has the same number of vertices. Vertices and faces cannot be added or removed between different frames of the animation. All texture and face information remains the same for each frame in the sequence. An example of morphing animation is used by Quake models. Each frame shows a creature in a different pose, and animation is done by show a sequence of poses. Power Render uses a more powerful animation technique called tweening. Tweening can produce in-between frames of animation. This allows for smoother animation between a series of vertex lists.

Power Render has two functions for morphing objects. They are defined as follows:

void PR_Morph (PR_VERTEX *vert1, PR_VERTEX *vert2,

PR_VERTEX *vertdest, PR_DWORD numvert, PR_REAL t)

void PR_MorphWithNormals (PR_VERTEX *vert1, PR_VERTEX *vert2,

PR_VERTEX *vertdest, PR_DWORD numvert, PR_REAL t)

Vert1 and vert2 are pointers to two vertex lists. Both functions will generate a set of vertices that is somewhere between the two vertex lists, and store it in vertdest, which is a previously allocated vertex list. Usually vertdest will be a vertex list referenced by an existing object so the next time you render it, the vertices will have moved. The t parameter is a floating point number between 0 and 1, which tells how close the animation is to the second vertex list.

Morphing with normals is required if the object uses shaded rendering methods and you want the lighting to look correct for the tweened vertex list.

Since morphing data is not part of the PRO format, you must store the frames (vertex lists) in a series of files. Each frame of animation should be created with your modeling program and saved as a suitable import format. After converting the frame to a PRO file, you can use the SAVEMESH utility to write the vertex list to a file. The first frame should contain the texture mapping and material information. This frame is loaded with PR_LoadPro and the vertex lists for other frames can be loaded using the code from the LOADMESH utility. Once all of the data has been loaded, you can use the morphing routines mentioned above to generate the animation. You should also make sure you save the first frame’s vertex list in a separate file because it will be modified when you call one of the routines.

This method requires a lot of data for each frame, however it allows you to deform the object in any way you like.

13.2 Keyframe Animation

The second method of animation uses a series of keyframes to tell the orientation of each segment. Segments are given a specific translation, scaling, and rotation values at a certain frames of the animation. The keyframe animation routines will calculate all intermediate frames for you.

Currently Power Render supports linear rotation between keys. The maximum rotation between any two keys is 180 degrees. Both linear and non-linear translation and scaling is supported. Non-linear movement is achieved using splines, with bias, tension, and continuity information. 3D Studio also uses “ease to” and “ease from” information but Power Render ignores it.

With this type of animation segments are usually part of a tree structure. This tree controls the relationships between different segments. For example, if a hand is connected to an arm and the arm rotates, the hand will rotate as well. This is called the parent-child relationship. Each segment in the tree can have any number child segments, but only one parent segment. Any transformation applied to the parent object will affect all of its children.

Each object can have any number of trees. For each of these trees, there is one segment at the top. This is called the root segment. Any segment that is not a root segment is called a subsegment, and has the FLAG_SUBSEG bit set in the flags variable. This is important because it tells the renderer that the segment will be drawn through recursive traversal of the tree. If this flag is missing, each segment that references it as a child will draw it again. Each segment has three pointers to other segments. The child pointer is a link to the next segment in the tree. If a segment has more than one child, it is linked by the next pointer. A pointer to the parent segment is also kept.

There are a number of things that can go wrong when importing keyframes from 3D Studio or Lightwave files. Read the section on importing in chapter 7. You should design your objects with these limitations in mind. Here is a chart of the current limitations of the import formats:

Feature:
3D Studio (.3DS)
Lightwave (.LWS and .LWO)

Spline Rotation Keys
No (only linear rotation)
No (only linear rotation)

Spline Translation Keys
Yes
Yes

Spline Scaling Keys
Yes
Yes

Dummy objects
Yes
Yes

Detail Polygons
Does not apply
No

N-sided polygons
Does not apply
No

Camera keyframes
Yes
Yes

Light keyframes
No
No

The PR_AnimateEntity routine should be called before you transform each entity. This will initialize the matrices in the segments for a particular frame of the animation.

For cameras that have keyframed movement, you can call the PR_AnimateCamera routine. An example of this is shown in the PRVIEW source code.

14.0 3D Sprites

14.1 Introduction

3D sprites are essentially bitmaps that have a position and size in 3D space. They always face directly at the current camera. 3D sprites let you use very complex objects without requiring a lot of polygons. Some example uses of 3D sprites are background objects such as trees, or animated explosions.

14.2 Making a sprite

The first step is to create a material that will be used to display the sprite. For example:

PR_MATERIAL m;

PR_DWORD smoke_material;

PR_SetMaterialName (&m, "smoke sprite");

PR_SetMaterialMethod (&m, T_XTEXTURED);

PR_SetMaterialBaseColor (&m, 0);

PR_SetMaterialColor (&m, 255, 255, 255);

PR_SetMaterialTexture (&m, PR_LoadTexture("smoke.pcx"));

PR_SetMaterialShades (&m, 31);

PR_SetMaterialEnvironmentMap (&m, 0);

PR_SetMaterialMipMapState (&m, FALSE);

smoke_material = PR_AddMaterial (&m);

The next step is to create a sprite object. Instead of loading an object from a PRO or a 3DS file, use a routine called PR_AllocSprite. This creates an object with 2 triangles and 4 vertices. The faces are set up so they form a 2D bitmap, with the same dimensions as the texture. From this point on, the sprite is treated like a regular object. You can create multiply instances of it by creating entities, and it works the same way as a 3D object.

You can scale the sprite using PR_ScaleEntity. To rotate a 3D sprite, you must use the PR_RotateSegment routine with the first segment within the entity, and rotate about the Z axis.

Since a 3D sprite is composed of polygons, it can use shaded rendering methods such as Gouraud Texture. Also, it makes no sense to use perspective texture mapping on a 3D sprite since the Z values at each vertex are the same.

14.3 Animating Sprites

When animating a 3D sprite, you should create an array of materials, and an array of objects created with PR_AllocSprite. The reason for this is that you may need to have multiple instances of the sprite within the world. Since the texture number is stored in the material, changing it will affect all sprites using that material. Instead of changing the texture number, you can change the pointer to the object used by the entity. This pointer is stored in the “shape” variable of the entity.

For example:

explosion_entity[i]->shape = explosion_shape[frame_number];

15.0 Using the Terrain Engine

15.1 Introduction

The goal of the terrain engine is to provide a large world based on a 2D bitmap. The landscape is large grid, and each value on the bitmap represents the height of a vertex on the grid.

Power Render uses up to 3 bitmaps for the landscape. The first is a 8-bit bitmap which represents the height values (0-255). The second is an 16-bit bitmap which represents the texture number (0-65535) for the square which is directly below and to the right of the vertex. This bitmap is represented as a WGT map file so you can use the WGT Map Editor to design the surface features of the landscape. The third bitmap is optional. It is an 8-bit bitmap which represents the shading values for each vertex. This allows you to precompute the lighting of the landscape using radiosity, raytracing, or other lighting techniques. All of the bitmaps must be the same size.

Power Render does not include utilities for creating the heightfield or other bitmaps. You can use a third party terrain generator, or create a utility which can edit the landscape by modifying heights, textures, and shade values.

15.2 Setting up the Tiles

You must load an array of textures for the tiles. You can store each texture in a separate file, or you can keep them in a WGT sprite file. I prefer the latter since all the images are kept in a single file and can be loaded with the wloadsprites routine. If you use this method, each texture must be added to the world texture list. See the prland.c example for a complete example.

The first material should use the NULL rendering type. This will allow certain parts of the landscape to be invisible when using multiple levels.

m = &PR_ObjectMaterialList[OBJ_TILES];

PR_SetMaterialName (m, "NULL");

PR_SetMaterialMethod (m, NULL_TYPE);

OBJ_TILES is a number which tells how much room to leave for other materials. When a new material is added, it picks the next available index. We don’t want this to use materials that the terrain might be using, so some indices are left empty. You tell the terrain engine what the first index used by the tiles is when you call the PR_AllocateTerrain routine.

Each texture must have a unique material associated with it. You can set up the material’s properties differently for each texture. If you are using shading, the rendering method should include flat or gouraud shading. Mipmapping may increase the speed of the terrain. You can also switch between gouraud and flat shading based on the distance.

15.3 Creating the Terrain Object

A special object is used for terrains. You can generate the object be using the PR_AllocateTerrain function. For example:

terrain = PR_AllocateTerrain (terrain_size,

TERRAIN_PLAIN | TERRAIN_SHADING,

WORLD_SCALE, HEIGHT_SCALE, OBJ_TILES);

The terrain object is a square grid, of (N+1)x(N+1) vertices and NxN*2 faces. The size of the terrain is passed in the first parameter. This is actually half the length of the terrain mesh (N). This number determines how many pieces of the grid mesh be be seen away from the camera. The camera always remains in the center of this grid mesh.

15.4 Loading the Terrain Data

To load the 3 bitmaps required to display a heightfield, call the PR_LoadTerrain function. The shading bitmap is optional. For example:

PR_LoadTerrain (terrain, 1, "height.pcx", "map.wmp", "shade.pcx", 32);

The last parameter tells the maximum shade value used in the shading bitmap. Up to 3 sets of bitmaps can be loaded at once, to form multiple layered heightfields. The second layer is upside down, for cave ceilings. With 2 layers you can create completely underground terrain maps. The third layer is right side up like the first layer, and is used for the top exterior of a cave. With three layers you can create maps with both outdoor and cave regions.

When using multiple layers, you will not want to see all layers everywhere. For example you might have a lake area which only requires the first layer. If you make the first tile number use the NULL rendering method, the polygons will be immediately rejected and will not draw. The heightfields for the other layers still have values, but they will not be shown.

15.5 Rendering the Terrain

The terrain heightfield data is read each time the camera moves one grid length. For example, if the camera is simply spinning and not translating, the heightfield, shading, and tile data does not change. You must call the PR_UpdateTerrain each frame, between the time you move the camera and you transform the terrain.

When you want to render the terrain, call the PR_TransformTerrain. This will transform and render the terrain at the same time. All layers currently loaded will be transformed. The terrain library uses special optimizations which allows for multiple layered terrains to be transformed quickly.

15.6 Morphing Heighfields

To modify values on the terrain, you can access the heightfield as a bitmap and draw on it. Since the mesh data is only changed periodically, you must call the PR_ModifyTerrain function to let the library know it should read new heightfield data when PR_UpdateTerrain is called.

The terrain library calls a function PR_TerrainWaveFunction when each set of values is read from the terrain bitmaps. This allows you to change the height, shading, and tile data depending on the x and y coordinates of the vertex. This is useful for making rippling wave patterns or pulsating lights in sections of the landscape. The wave function can do different things depending on the tile number, so any number of effects can be used on the same terrain. This function must be present in your application regardless if you use it. If you do not want waves, you can simply make the function return immediately. Using this function requires that you constantly call the PR_ModifyTerrain function so the new terrain data will be read into the terrain mesh.

The terrain appears to be an endless world. You can fly from one side of it to another and it repeats itself. This means the height values along the edges of the heightfield should be similar to those along the opposite side. You must make sure the camera wraps around at the edges of the world, and also that any entity is no more than half the map width and height away from the camera. There is code in the terrain examples that show how to fix the coordinates of entities when the camera location wraps around.

16.0 Particle System

Power Render 2.6 now has a powerful particle system. Particles are used for explosions, debris, smoke trails, sparks, blood, rain, snow, and other special effects.

The particle system has two basic elements: particles and emitters.

16.1 Particles

A particle in Power Render can be a 3D sprite (billboard), or a 3D mesh. 3D sprites are used most of the time because they are composed of only two triangles and you can have a lot of particles active at once without suffering from much of a speed loss. Particles have a number of attributes to describe them, such as location, velocity, scale, alpha, animation frame, and lifespan.

Particles usually have a short lifespan, and have a number of ways they can reach the end of their life, such as a user defined time limit, the scale decreases to 0, the alpha decreases to 0, the animation finishes, or it collides with part of the 3D world.

16.2 Emitters

An emitter is something which creates particles. An emitter can have its own location and velocity, along with other parameters. Emitters can have a limited lifespan as well. During each update, an emitter can create any number of particles, possibly with random velocities or random distances from the emitter.

16.3 User Callbacks

Since collisions between the emitters, particles, and the 3D world will depend on the type of environment being used, a user defined collision detection routine is called when each particle and emitter is updated. For example if the program is using a heightfield, you can see if the emitter is below the heightfield, and then create one or more emitters of different types, such as a small explosion caused from a smoking piece of shrapnel falling to the ground. Chain reactions between emitters make it possible to design huge multipart explosions simply by creating a single emitter which in turn create the other parts. With careful planning, this can be done automatically by the particle system. It is not wise to create emitters of the same type in a collision routine because the emitter will never terminate. The callback routine does not have to be based on collision. You could also perform tasks based on any of the emitter or particle attributes. For example playing a sound effect during the first update, or spawning a new emitter after the time count reaches a certain number.

Particles also have a callback for drawing the actual particle. This routine must transform and render the entity associated with the particle. By using a callback, you can add effects like reflections by drawing the particle more than once.

16.4 Templates and Lists

The particle system has two arrays of particles and emitters. The first acts as a template, which holds the basic attributes. These are defined by the user before the rendering begins. The second is a list of the actual particles in the scene. When a new particle or emitter is created, an empty position in the array is found, the template is copied in, and unique data such as position and velocity is stored.

16.5 Using the Particle System

The first thing you must do is create the arrays for the templates and master lists, using the PR_AllocParticles and PR_AllocEmitters routines.

Next, you must create the particle and emitter templates. This is done by calling the following routines:

Particle Template Routines:

 PR_InitializeParticleType (PR_DWORD partnum)

 PR_SetParticleMovement (PR_DWORD partnum, PR_DWORD action)

 PR_SetParticleGravity (PR_DWORD partnum, PR_REAL gravity)

 PR_SetParticleDrag (PR_DWORD partnum, PR_REAL drag)

 PR_SetParticleAlpha (PR_DWORD partnum, PR_WORD initial, PR_DWORD delta)

 PR_SetParticleTimeLimit (PR_DWORD partnum, PR_DWORD numframes)

 PR_SetParticleAnimation (PR_DWORD partnum, PR_DWORD start, PR_DWORD end, PR_DWORD delay, PR_UCHAR loop)

 PR_SetParticleScale (PR_DWORD partnum, PR_REAL initial, PR_REAL delta)

 PR_SetParticleEntity (PR_DWORD partnum, PR_ENTITY *entity)

 PR_SetParticleCollisionProc (PR_DWORD partnum, void (*collideproc)(void *particle))

 PR_SetParticleDrawProc (PR_DWORD partnum, void (*drawproc)(void *particle))

Emitter Template Routines:

 PR_InitializeEmitterType (PR_DWORD emitnum)

 PR_SetEmitterMovement (PR_DWORD emitnum, PR_DWORD action)

 PR_SetEmitterRotation (PR_DWORD emitnum, PR_MATRIX BaseRotation,

PR_MATRIX AngularVelocity, PR_POINT *distance)

 PR_SetEmitterRotation (PR_DWORD emitnum, PR_MATRIX rotation, PR_POINT *distance)

 PR_SetEmitterGravity (PR_DWORD emitnum, PR_REAL gravity)

 PR_SetEmitterCollisionProc (PR_DWORD emitnum, void (*collideproc)(void *emit))

 PR_SetEmitterSpawnProc (PR_DWORD emitnum, void (*spawnproc)(void *emit))

 PR_SetEmitterCollisionAction (PR_DWORD emitnum, PR_DWORD action)

 PR_SetEmitterRandomDistance (PR_DWORD emitnum, PR_DWORD radius)

 PR_SetEmitterRandomVelocity (PR_DWORD emitnum, PR_DWORD speed)

 PR_SetEmitterTimeLimit (PR_DWORD emitnum, PR_DWORD numframes)

 PR_SetEmitterBounceParameters (PR_DWORD emitnum, PR_POINT *factor,

PR_DWORD maxbounce)

 PR_SetEmitterDelay (PR_DWORD emitnum, PR_WORD delay)

 PR_SetEmitterNumParticles (PR_DWORD emitnum, PR_WORD number)

 PR_SetEmitterParticleType (PR_DWORD emitnum, PR_DWORD particletype)

The first parameter in each of these routines is the template number, which should not exceed the number of templates originally allocated.

There are a lot of options you can use here, but you do not have to call each one of these functions for each particle and emitter. Calling a routine will activate an attribute. For example, if you do not call PR_SetEmitterTimeLimit, the emitter will not terminate after a certain number of frames. The PR_InitializeParticleType and PR_InitializeEmitterType routines set the template to some default values for all of the attributes.

Once you have the templates ready, you must add the following two routines to update the particles and emitters to your main game loop:

 PR_UpdateEmitters (ticks_passed);

 PR_UpdateParticles (ticks_passed);

These routines will call the user callback functions for rendering the particles, so the rendering pipeline must be ready to receive them. They are designed to work at a constant update rate, regardless of how fast you can display the screen. For example if 10 ticks have passed since the previous update, an emitter which is designed to emit a particle each frame will create 10 particles in the correct places during the current update.

During your program, you can create new emitters or individual particles using the following routines:

void PR_CreateEmitter (PR_DWORD type, PR_POINT *location, PR_POINT *velocity)

void PR_CreateParticle (PR_PARTICLE *ParticleType,

PR_POINT *location, PR_POINT *velocity)

17.0 Power Render Collision Detection

Power Render 2.6 includes a new set of routines for collision detection which use rays to check for collisions.

A ray is a 3D vector. It has a start location, end location, direction, and a length. This information is stored in a structure called PR_RAY. The direction and length values are calculated from the start and ending locations when the ray is created.

To create a ray, use the PRCL_RayFromPoints routine:

PR_RAY ray;

PR_POINT start, end;

 /* Define start and end */

 ...

 res = PRCL_RayFromPoints (&ray, &start, &end);

The result will be PRCL_FALSE is the ray has a length of 0, otherwise

it returns PRCL_TRUE and the ray is valid.

A ray can be checked for intersections between four basic primitives: boxes, planes, polytopes, and triangles.

All of the intersection routines will return an intersection status. This tells if an intersection between the ray and the primitive exists. If there is an intersection, the intersection parameter is filled in. The parameter is the length of the ray from the start to the point of intersection.

17.1 Boxes

Boxes are axis aligned bounding boxes. They are stored in the PR_BOX structure. A box is created by specifying the minimum and maximum corners in 3D space. This primitive cannot be rotated, which limits its use.

There isn't a box creation routine, but all you have to do is fill in the two corner locations in the PR_BOX structure.

The box intersection routine is defined as follows:

PR_DWORD PRCL_RayIntersectsBox (PR_BOX *box, PR_RAY *ray, PR_REAL *t);

17.2 Planes

A single plane can be created with the PRCL_PlaneFromPoints routine. This can be used to build more complex shapes, such as the polytope already included.

The plane intersection routine is defined as follows:

PR_DWORD PRCL_RayIntersectsPlane (PR_RAY *ray, PR_PLANE *plane, PR_REAL *t);

17.3 Polytopes

A polytope is a 3D volume bounded by planes. The volume must be a convex 3D shape. This means shapes such as an extruded 'L' cannot be represented by a single polytope, but it could be divided into two rectangular convex volumes. The planes in a convex volume will only intersect outside the volume itself.

Each plane forms a halfspace, and a point is inside a polytope if the point lies in the same halfspace for all bounding planes.

Polytopes are created by converting a segment within an object to a list of planes with the PRCL_CreatePolytope routine. This makes it easy to design convex volumes within a modeling program and load them into Power Render. When a segment is converted to a polytope, a plane is created from each face, and only unique planes are stored in the polytope's plane list. For example if you have a cube with 12 faces, the polytope will only store 6 planes because each side of the cube has 2 coplanar faces.

The PRCL_CreatePolytope function uses transformed vertices to create a polytope. This means the segment needs to be transformed at least once before creating the polytope. A segment is not transformed if it lies outside the viewing volume, but you can force it to be transformed by setting the segment's flags to FLAG_ALWAYS_VISIBLE. You should call "PR_MatrixIdentity (PR_ViewMatrix);" before transforming otherwise the camera position and field of view values will affect the polytope. This will remove the transformation from world space to camera space, something you will normally want to do when performing collision tests.

Usually you will have two representations of an object. The first will be the regular mesh with textures, materials, and so on. The second representation will just have convex volumes that can be converted to polytopes after loading. For example, you may have a highly detailed cabinet, but you only need a 6 sided rectangular volume for collision detection.

Since polytopes are made from transformed vertices, this allows you to use keyframing on your volume representation. You can call PR_AnimateEntity and PR_TransformEntity, then convert each segment to a polytope. The volume representation should match the movements in the regular representation. Ideally you will replace each part of the original hierarchy with a simpler volume representation without destroying the parent and child links.

The polytope intersection routine is defined as follows:

PR_DWORD PRCL_RayIntersectsPolytope (PR_POLYTOPE *tope, PR_RAY *ray, PR_REAL *t, PR_DWORD *planebits);

This function has an extra filled in value called planebits. This is used to report which planes of the polytope were intersected. It is used for algorithms that slide the ray along the sides of the polytope.

A bit in the planebits value is turned on if the ray has intersected with that plane. A value of 1 represents plane 0, 2 represents plane 1, 4 represents plane 2, and so on.

17.3 Triangles
Finally, you can check for intersections between a ray and a single triangle. Again, the collision is done on transformed vertex coordinates.

17.31 World Space Collision

If you want to perform collision in world space, you must set the PR_ViewMatrix matrix to the identity before transforming the vertices, as mentioned earlier.

17.32 View Space Collision

You can perform triangle or object picking by transforming the vertices to view space (using the regular camera transformation) and creating a ray in view space. Example 18 shows how to do this. You can then search through all of the triangles in an object and find which one has the closest point of intersection. You can also perform entire object picking just by finding if any triangle intersects.

The triangle intersection routine is defined as follows:

PR_DWORD PRCL_RayIntersectsTriangle (PR_RAY *ray, PR_VERTEX *v0,

 PR_VERTEX *v1, PR_VERTEX *v2, PR_REAL *t);

18.0 Direct3D Notes

Power Render version 2.5 and later supports most 3D accelerator cards by Direct3D. DirectX 5.0 or later is required, and the display drivers must support the DrawPrimitive routine.

18.1 Initializing Direct3D

Projects and workspaces are provided for compiling the example and utilities with Direct3D.

It is no longer necessary to choose different Power Render devices before initializing. A utility module called devdlg.c has been created which displays a dialog box and allows you to select which DirectDraw Driver and Direct3D device to use. There are four Direct3D devices available: Ramp (uses PR’s software rendering routines instead of D3D’s), RGB (uses Direct3D’s 16 bit software rendering routines), HAL (for 3D hardware), and MMX if the processor support it.

When you call PR_Initialize, a routine called PR_ChooseDDraw_Driver is called to select the driver and device. It is defined at the end of the devdlg.c file, which is found in \pr\winex\util. By default this is set up to return values from the dialog box.

Full code and resource files are provided for this dialog so you can customize it for each program you write.

18.2 Rules to Remember about Direct3D

Some 3D cards do not support 2D routines while rendering 3D triangles. This means all routines which Blt or Lock a surface cannot be used between a PR_NewFrame and PR_RenderFrame pair. All of the PRGFX_* routines except for PRGFX_PutTexture and PRGFX_ResizeTexture fall into this category. The routines for displaying textures draw a rectangle formed by two triangles, and must be between a PR_NewFrame and PR_RenderFrame pair.

The PRGFX_Clearscreen routine will only clear the backbuffer. If you need to clear the front buffer, use the PRGFX_Bar routine instead. This should only be used for non-realtime code, since it accesses the linear frame buffer directly.

The terrain engine requires that heightfields and their associated bitmaps have a width that is a multiple of 8.

19.0 OpenGL Notes

Power Render version 2.6 and later supports hardware and software rendering through OpenGL drivers.

A utility file called glutil.c can be found in \pr\winex\util. This file contains some defines near the top, which allow you to control if the program runs in full screen or windowed mode. All of the examples and utilities are designed to be run in full screen mode, however the examples which do not require or keyboard mouse input can be run from within a window.

Normally the OpenGL version uses DirectInput for keyboard and mouse handling. If you are creating a windowed application you can comment out the appropriate define in glutil.c so it does not require DirectInput.

Using OpenGL with Power Render is slower than Direct3D, however it may be useful for designing tools and editors with windowed applications.

20.0 Power Render Utilities

There are many utilities included which make it easier to manipulate the data required for showing 3D worlds. These programs can be divided into 5 categories: PRO File Utilities, Texture Utilities, Material Utilities, Terrain Utilities, and Object Viewers.

20.1 PRO File Utilities

20.1.1 3DS2PRO

Purpose:
Convert 3D Studio .3DS files into the PRO format.

Usage:

3DS2PRO filename.3DS [-s #] [-t EXT]

Options:
-s #

: Set the conversion scale (1.0 for no scaling)

-t EXT

: Sets the texture extension, for textures obtained from

 the 3DS file.

Before using the other Power Render utilities, you must first convert your models into .PRO files. If you do not use the -t option, you must define the textures yourself using TEXSKIN or TEXSET. All texture files must be one of the formats supported by Power Render. When converting, the textures must be in the same directory as the 3DS file. If the texture wraps around any faces more than once, make sure you use a 256x256 texture and change the texture mapping method accordingly if using software rendering.

For some of the models that came with the 3Dfx Flip example, you can use -t 3DF to use the 3DF textures provided with them. 3DF is only compatible with 3Dfx cards so using this image format is not recommended.

The scale parameter is used to alter the original scale of the object. If you want it to contain the same coordinates as the modeling program, use a scale of 1. Scaling the mesh data is preferred to scaling the matrices within your program.

20.1.2 DUMPPRO

Purpose:
Provides a text dump for viewing the contents of a PRO file.

Usage:

DUMPPRO filename.PRO

This is mainly provided for debugging the file format. Several pages of information will be shown so you should redirect the output.

For example, DUMPPRO robot.pro > robot.txt

20.1.3 JOINPRO

Purpose:
Joins two PRO files into one.

Usage:

JOINPRO file1.PRO file2.PRO outfile.PRO

This utility allows you to create multiple textured objects by joining two unique objects into one. The resulting file will be treated as a single object with new segments.

20.1.4 UNIFY

Purpose:
Combines all segments into one

Usage:

UNIFY file1.PRO outfile.PRO

This utility will merge the vertex and face lists of all the segments and make one segment with everything in it. It is typically used after JOINPRO when constructing an object.

20.1.5 OBJFLAG

Purpose:
Changes the visibility flags of an object.

Usage:

OBJFLAG file1.PRO outfile.PRO

This utility allows you to change the how the faces of an object will be shown. You can choose one of front visible, back visible, or both. Every polygon in the object will be modified with the new flags.

20.1.6 SAVEMESH

Purpose:
Saves the vertices of an object to a raw data file

Usage:

SAVEMESH filename.pro mesh.PRM

Sometimes you may wish to bend or flatten a mesh in order to map it correctly using TEXSKIN. SAVEMESH and LOADMESH allow you to import and export the coordinates of the vertices without changing the texture data.

20.1.7 LOADMESH

Purpose:
Loads the vertices from a raw data file into an object

Usage:

LOADMESH filename.pro mesh.PRM

This utility will replace the vertices in the PRO file with those in the PRM file. Only the coordinates of the vertices are imported.

20.1.8 LWO2PRO

Purpose:
Converts a Lightwave object file to a PRO object file.

Usage:
LWO2PRO is operates the same way as 3DS2PRO, except that textures are not supported. Only triangle based objects are supported.

20.1.9 CENTPRO

Purpose:
Centers all vertices within an object around the origin.

Usage:

CENTPRO infile.PRO outfile.PRO

This utility should not be used with object containing a hierarchy and pivot locations.

20.1.10 LWS2PRO

Purpose:
Converts a Lightwave scene file to the PRO format

Usage:

LWS2PRO file.LWS file.PRO [-p] [-s #]

This utility converts a Lightwave Scene file into a PRO file. Keyframe animation is also converted. The –p option will load .PRO files instead of .LWO files when reading the scene. This allows you to apply different textures and materials to individual parts of the scene.

20.1.11 PHONG

Purpose:
Doubles the number of faces in an object and makes the second set environment mapped with a phong highlight texture map.

Usage:

PHONG infile.PRO outfile.PRO

This utility is meant for use with 3D cards only. All faces in the object will be duplicated and set up for alpha blending. A 256x256 PCX image called phong.pcx must be in the directory of the object.

20.1.12 MAKESPR

Purpose:
Creates a PRO file containing a sprite given an image file

Usage:

MAKESPR texture.ext outfile.pro scale

Options:
texture.ext - An image using a format supported by PR

outfile.pro - File to create

scale - Floating point scale value of sprite

You may want to store a sprite in a PRO file rather than creating it from within a program. This is useful with the swapseg utility, for replacing parts of a hierarchy with a sprite. It can also be used with scnedit to place sprite objects in a scene.

20.1.13 SWAPSEG

Purpose:
Replaces a segment within an object with a PRO file.

Usage:

SWAPSEG file1.pro segname file2.pro outfile.pro

Options:
file1.pro - Name of the object containing the segment you want to replace

Segname - Name of the segment within the object

file2.pro - Object to replace the segment with

outfile.pro - Resulting object

The file you are replacing the segment with must contain only one segment itself. This utility was primarily created so you can create dummy segments in a object as part of the hierarchy, and replace them with sprites later. For example you can add glowing effects to a character's eyes.

The segment name is the one that appears in the scene as it was designed in the original format (3DS, LW, etc).

20.1.14 SETRGB

Purpose:
Changes the rendering methods of an object to use precalculated lighting

Usage:

SETRGB file1.pro file2.pro

Options:
file1.pro - Original object

file2.pro - New object (can be the same as original)

This utility is handy for preparing objects for use with the PRLIGHT utility. Since there are different kinds of precalculating rendering methods, you can either modify this utility or use editmat to change them.

20.1.15 PRLIGHT

Purpose:
Adds precalculated lighting to a PRO file

Usage:

PRLIGHT filename.pro scene.lgt

Power Render 2.6 has a new set of rendering methods that use per vertex RGB lighting. This allows you to prestore RGB values at each vertex of an object. Before using this utility, you must have one or more of the materials in the PRO file using one of the RGB rendering methods. You can use editmat or setrgb to set up the materials properly.

PRLight lets you place any number of directional and point lights in 3D space and adjust their color, strength, and radius. Results are shown in realtime so you know exactly how it will look. Lighting is done at the vertex level, as opposed to lightmaps used in games such as Quake2.

Pressing and holding F1 will show the mouse and keyboard controls.

PRLight is designed to be run from any directory, so keep your PRO file and textures in a separate directory. You can add the directory to your path environment variable, or copy the files in the main PRLight directory to your \pr\bin directory if you have already installed Power Render.

hen you first load a new model, there will not be any lights. This means you'll just get a black screen. You'll probably want to add a directional light as the first light, so you can see the model. You can change the directional light to a point light afterwards if you don't want a directional light.

You should also get familar with the camera control. If you hold down CTRL and move the mouse up and down, the camera will move forward and backward in the direction it is facing. If you hold down ALT and move the mouse, it will control the direction of the camera. If you want to move the camera to a new location, first aim it where you want to go using ALT, and then use CTRL to move it.

While you hold down CTRL or ALT, the current light will flash quickly. This will show you exactly which light you will be changing.

If you cannot see the current light, you can hit ENTER to move the camera directly in front of it. The current camera angle is maintained. If you want to move the current light directly in front of the camera, press SPACE.

If you move the camera too far away from the model and can't find your way back, press HOME to return to the origin. Note that models don't have to be centered at the origin so this may be a bad thing to do.

PRLight reads some initialization data from a file called prlight.ini. This allows you to control the scale of the camera and light movement, maximum number of lights, etc. Depending on the scale of your PRO models, you'll have to modify this file. The default file looks like this:

 MAXLIGHT 500

 MOVEMENT_MULTIPLIER 20

 MAXRADIUS 15000

 POINTER_SCALE 200

 If you change any of these values, just change the number. The utility requires that the lines occur in the order shown.

 MAXLIGHT defines how many lights are available.

 MOVEMENT_MULTIPLIER defines how fast the camera and lights move

 MAXRADIUS defines the largest radius value for a point light

 POINTER_SCALE defines the scale of the light markers.

For larger models with lots of vertices, you may want to modify the code so the lighting is computed when the mouse button is released instead of every frame drawn.

20.2 Texture Utilities

20.2.1 TEXSKIN

Purpose:
Apply textures to a PRO file, using the planar mapping method.

Usage:

TEXSKIN filename.PRO front.[IMG] [back.[IMG]] [-m materialname]

One of the hardest parts of 3D game design is getting the textures place on the characters and objects. Most 3D modeling applications allow for planar, cylindrical, and spherical mapping. This requires a lot of patience because you cannot see the results of the mapping immediately. Instead you have to wait for the application to render the scene. Power Render allows you to interactively align textures onto the objects. You can easily set the scale, rotation plane, and offset of the texture.

As well as mapping a single texture onto a 3D object, you can also use front and back textures. An adjustable back plane determines which texture a polygon should use. This is a powerful option for creating characters. For example you would not want a person's face to be on the back of his/her head, so you can apply a front and back texture. This method works best if the mesh is laid out flat and the back plane intersects the mesh at the correct places. The back texture is optional. If you do not specify a back texture on the command line, a single texture is used for all polygons. Front and back textures MUST be the same dimensions.

The –m switch allows you to set the texture for a particular material. Existing textures and materials are not changed. The material will be reset to a plain texture method, so you must later run EDITMAT to change the method. You can also use the EDITMAT utility to find out the material names.

When you run this utility, the object will appear in the top left of the screen, and a control panel will be shown on the right side.

There are several variables that you can control using + and - buttons. They are:

X:

- X plane rotation

Y:

- Y plane rotation

Z:

- Z plane rotation

X Scale:
- X scale of texture

Scale:

- Changes both X and Y scale of texture

Y Scale:
- Y scale of texture

Back Dist:
- Z value of the back plane (only appears if using two textures)

Note that clicking on the right button of the mouse will change the variables much quicker, and the object is not updated until you release the button. Below these variables are two buttons. The first is for aligning the texture to the viewport. This make it easy to align a texture. First rotate the object so the front is facing you, then click on this button or hit the 'A' key. The texture plane will be directly facing you now. Note that you can hold down the 'A' key as you rotate the object and texture will remain facing you.

The next button is used to control texture wrapping. If your texture has a width of 256 pixels, you can make the texture repeat many times over the surface of the 3D object. When using 3D hardware, any sized texture can be wrapped, however the object will not work with software rendering.

The next set of buttons are the control mode buttons. When you click and drag the mouse inside the object preview window, you change one of the viewing variables. Only one of these buttons can be selected at once. They are: Rotate Object, Move Object, Rotate Plane, Scale, and Camera. Each button has a keyboard shortcut so you don't have to click on the buttons to change modes.

Rotate Object is self explanatory. The texture plane will rotate along with the object so no changes will be made to the mapping.

Controls:
Left click = X/Y rotation, Right click = Z rotation

Keyboard shortcut is 'Spacebar'

Move Object will slide the object along the X or Y axis. The texture plane does not move. This allows you to offset the texture from the middle of the mesh.

Controls:
Left click = X/Y translation, Right click = nothing

Keyboard shortcut is 'Left Shift'

Rotate Plane operates the same way as Rotate Object, only the object remains still and the plane rotates.

Controls:
Left click = X/Y rotation, Right click = Z rotation

Keyboard shortcut is 'Left Ctrl'

Scale changes both X and Y scale values.

Controls:
Left click = Change X/Y scale, Right click = nothing

Keyboard shortcut is 'S'

You can also hold down ‘X’ or ‘Y’ for scaling in a single axis only.

Camera allows you to move around the object without affecting the mapping coordinates.

Controls:
Left click = Translate X/Y, Right click = Translate Z (zoom)

Keyboard shortcut is 'Z'

Once you're happy with the results, you can click on save. This will overwrite any texture coordinates previously stored in the PRO file.

20.2.2 TEXSET

Purpose:
Allows you to change the texture position and shade of each vertex in every polygon.

Usage:

TEXSET filename.pro
This utility allows you to place the texture coordinates exactly where you want them. You will typically use this after applying a texture with TEXSKIN, or to define texture positions from scratch. You can also set the precalculated lighting values.

The interface is similar to the TEXSKIN utility except for the toolbar on the right side. The first five variables you can change deal with the segment, face, vertex, material, and shade. Below these you will see a texture preview window. A triangle will display in this window to show exactly how the texture coordinates are mapped on the triangle in the mesh. A corresponding triangle will appear in the Object Preview window to highlight the face you are modifying.

Note that tiled textures are currently not supported.

The shade value is a range between 0 and 100 percent. The actual value stored in the file depends on the number of shades used by the material.

Below the texture window are two toggle switches for the Object Preview window. These allow you to rotate the object, and move the camera around. The rotate button’s keyboard shortcut is the spacebar, and the camera button’s shortcut is the ‘Z’ key.

20.2.3 SPRMIP

Purpose:
Creates mip maps for a series of textures

Usage:

SPRMIP filename.spr

This utility will make mip map textures given a WGT Sprite file containing the original images. Four levels are created and stored back into the file. This makes it easy to modify a texture, because you can update the mip maps as well.

Note that in order to import a large texture, you must use the LOAD SINGLE option within the Sprite Editor. This will load any image into a slot and ignore the palette.

The utility will ask how many textures are stored in the file. You should enter the maximum number of normal textures you expect to use. For example if you choose 256, the mip maps will be created in the following sprite positions:

0-255:

Original textures (left intact)

256-511:
Mip map level 1 (1/2 size)

512-767:
Mip map level 2 (1/4 size)

768-1023:
Mip map level 3 (1/8 size)

1024-1278
Mip map level 4 (1/16 size)

Mip maps are stored as separate images because the smaller textures will fit in the cache better and therefore draw quicker.

20.3 Material Utilities

20.3.1 EDITMAT

Purpose:
Edits the materials used by an object

Usage:

EDITMAT filename.PRO

This utility allows you to change the material properties of an object. You can add new materials, textures, or shade tables, as well as modify the existing ones.

There are 3 modes which are chosen by the buttons at the top right of the screen. The modes are “material”, “texture”, and “shade table”.

The attributes you can modify are:

Name

Render Method

Texture Number

Base Color

Shades

Shade Table Number

Environment Map State

Environment Map Axis

Mip Map State

Mip Map Material

Mip Map Shift

RGBA color information

Texture Filename

Shade table Filename

20.3.2 MAKETAB

Purpose:
Creates shade tables using a palette contained in a texture map.

Usage:

MAKETAB texture table

The utility will first ask you for the number of shades. More shades will provide greater shading detail and realism. Values of 32 or 64 are commonly used.

You will then be asked for the type of table you want to create. Valid types are Gouraud, Phong (Gouraud with a specular component), and Translucent.

If you choose Gouraud, you will be asked for the starting and ending percentage of the colors. A normal Gouraud range would be from 0.0 to 1.0. You can add ambient lighting by starting at 0.2 instead of 0.0 for example. You can also add over brightening, such as 0.0 to 3.0. This means the brightest color in the table will be 3 times as bright as the original color.

If you choose Phong, you will be asked for the Specular and Shine values. Typical Specular amounts range between 0.0 and 1.0. Typical Shine amounts range between 20 and 1000. The higher the shine value, the more concentrated the highlight is. If you choose a shine value below 20, you'll end up with a very bright object. For starters, try the values 0.5 and 100.

If you choose Translucent, you will be asked for percentages of foreground and background colors. Both values should total to 1, but they can be anything. For example you could use 2.0 (200%) of the foreground, and 0.3 (30%) of the background. The MAKETAB utility doesn't care what values you use so it's up to you to make the translucency look nice.

The texture is shown on the screen as the table is being calculated, and the table is shown visually once it is computed. A keypress will then return you to DOS. Please be patient because the table requires a lot of time to calculate.

20.4 Terrain Utilities

20.4.1 PIC2WMP

Purpose:
Convert a PCX image to a WGT map.

Usage:

PIC2WMP filename.pcx outfile.wmp

This utility can be used to turn any PCX image into a WMP file which is used to store the tile numbers for the terrain. A WMP file can be edited by the WGT map editor. The main advantage of using WMP files is that you can have more than 256 unique tiles, unlike an 8 bit PCX image.

20.5 Object Viewers

20.5.1 PRView Pro

Purpose:
Displays 3D files interactively.

Usage:

PRVIEW filename.[PRO/3DS/LWO/MDL/MD2] [options]

Options available are:

-s scale

Changes scaling factor for 3DS and LWO files

-nocam

Ignores any camera stored in the file

-noanim

Ignores any animation stored in the file

-t ext

Imports textures from 3DS, using extension

ext = [PCX, 3DF, IFF, BLK, PAK]

-m pakfile
Specifies a PAK file (ie pak1.pak)

If none specified, it loads from the file directly

-g

Uses Gouraud shading for Quake models

-p file.pcx
Uses file.pcx for a Quake2 Skin (for player models)

-svga

Uses SVGA mode instead of VGA

3DS and LWO files are shown with Gouraud shading, and the palette is calculated from the diffuse components of the materials.

Controls:

Press F1 and F2 while running PRVIEW to see the controls available. They are also listed below.

Click on the slider to move quickly through the animation.

Spacebar
: Toggles between VCR and

 Inspect mode (hidden cursor)

TAB

: Cycles through SVGA modes

ESC

: Quits

Inspection Mode:

Move mouse
: Tilt camera

A

: Move camera forward

Z

: Move camera backward

C

: Toggle animation/user camera

+ (keypad)
: Increase movement speed

- (keypad)
: Decrease movement speed

LMB + move
: Spins around x/y axis

RMB + move
: Spins around z axis

MB + release
: Auto-spin mode

,

: Decrease Ambient light

.

: Increase Ambient light

;

: Decrease Gamma (3Dfx only)

"

: Increase Gamma (3Dfx only)

20.1.1 SCNEDIT

Purpose:
Creates 3D scenes from a number of PRO files

Usage:

SCNEDIT filename.SCN

This utility can be used to position objects in a small 3D environment or used as a basis for a more complex scene editor. Before running this utility, place all your objects and related data files (textures, shadetables, etc) in a

directory and run scnedit yourfile.scn. This will create or open the yourfile.scn scene.

On the right side of the screen you will see a simple interface. The first control selects the active entity. The next control selects the active object. Below this are buttons for turning the entity on and off. To add an entity, simply select an entity using the first control, then press the on button. An object will appear a short distance in front of the camera. To change which object the entity uses, use the second control. If you need to remove an offscreen object and put it somewhere else, turn it off and back on again. It will reposition the object directly in front of the camera.

If you click on the 3D display area you can click and drag the object around. The interface also has buttons for Location, Rotation, and Scale. Pressing these will change what happens when you click in the 3D display area.

To reset the location, rotation or scale, press the X key. This is useful if you want an object centered around (0,0,0) instead of a place in front of the current camera position.

To rotate the camera, hold down the left ALT key while moving the mouse. To move the camera forward or backward hold the left CTRL key while moving the mouse. You can move and look anywhere in the 3D world by switching between these two keys.

Pressing and holding the F1 key will display additional keyboard shortcuts.

When you’re done with the scene, press the Save Scene button and the .scn file will be written to the disk. From there you can either use the scene again in SCNEDIT or use the code from the scnedit utility to load it into your own programs.

�

Copyright 1997 Egerter Software

Page 5

[image: image3.png]Y-axis,

4 Z-axis

X-axis

