[image: image1.wmf]Technical Reference

 Version 2.6

February 1999

Liability, Warranty and Trademark

I, the Author, make no warranty of any kind, expressed or implied, including but not limited to any warranties of fitness for a particular purpose. In no event shall the authors be liable for any incidental or consequential damage arising from the use of, or inability to use, these programs. I hereby deny any liability to the maximum extent permitted by law.

You are fully responsible for everything you are doing with these programs!

Power Render and WordUp Graphics Toolkit are trademarks of Egerter Software.

3D Studio is a trademark of Autodesk Inc.

All other trademarks are the property of their respective owners.

Copyright (1999 Egerter Software

Index

2Liability, Warranty and Trademark

Index
3
1.0 Global Variables and Structures
11
1.1 The PR_Settings Structure
11
1.2 The Rendering Device Structure
13
1.3 Video Modes List
13
1.4 The Viewport Structure
14
2.0 Application Programmer Interfaces
15
Device Interface
16
PR_BeginScreen
17
PR_Detect3Dfx
17
PR_DetectSVGA
18
PR_DetectVGA
18
PR_EndScreen
19
PR_Flip
19
PR_Initialize3Dfx
20
PR_InitializeSVGA
20
PR_InitializeVGA
20
PR_OpenScreen
21
PR_SetMode
21
PR_Shutdown3Dfx
22
PR_ShutdownSVGA
22
PR_ShutdownVGA
23
Graphics Interface
25
PR_SetConstantZ
26
PRGFX_Bar
26
PRGFX_ClearScreen
27
PRGFX_Clip
28
PRGFX_HLine
28
PRGFX_Line
29
PRGFX_MakeColor
29
PRGFX_NewBlock
30
PRGFX_OutTextXY
31
PRGFX_PutBlock
31
PRGFX_PutBlock8bit
32
PRGFX_PutTexture
32
PRGFX_Rectangle
33
PRGFX_ResizeTexture
33
PRGFX_SetColor
34
PRGFX_SetTextBackground
34
PRGFX_SetTextForeground
35
PRGFX_SetTextTransparent
35
PRGFX_VLine
36
3D File Interface
37
PR_Load3DS
38
PR_LoadLWO
39
PR_LoadPRO
40
PR_SavePRO
41
Entity Interface
43
PR_AllocEntity
44
PR_AnimateEntity
44
PR_CreateEntity
45
PR_FreeEntity
45
PR_GetEntityFlags
46
PR_MoveEntity
46
PR_PositionEntity
47
PR_RotateEntity
47
PR_RotateEntityAbs
48
PR_ScaleEntity
49
PR_ScaleEntityAbs
49
PR_SetEntityFlags
50
PR_TransformEntity
51
Object Interface
53
PR_AllocObject
54
PR_AllocSprite
54
PR_CenterObject
55
PR_FlipFaceNormals
56
PR_FreeObject
56
PR_GetObjectFaces
57
PR_GetObjectVertices
57
PR_InitializeFaceNormals
58
PR_InitializeVertexNormals
58
PR_SetObjectFaceFlags
59
PR_TranslateObjectVertices
59
Segment Interface
61
PR_AllocSegment
62
PR_FindSegment
63
PR_FreeSegment
63
PR_MoveSegment
64
PR_PositionSegment
65
PR_RotateSegment
65
PR_RotateSegmentAbs
66
PR_ScaleSegmentAbs
66
PR_TransformVertexList
67
Camera Interface
69
PR_AddCamera
70
PR_AllocCamera
70
PR_AnimateCamera
71
PR_AttachCameraEntity
71
PR_CameraDirection
72
PR_DeleteCamera
72
PR_DollyCamera
73
PR_FindClosestCamera
73
PR_FindDirectionVector
74
PR_FreeCamera
74
PR_GetActiveCamera
75
PR_GetCamera
75
PR_GetFirstCamera
76
PR_InitializeCamera
76
PR_MoveCameraSource
77
PR_MoveCameraTarget
77
PR_PositionCameraSource
78
PR_PositionCameraTarget
78
PR_SetActiveCamera
79
PR_SetCameraMode
79
Light Interface
81
PR_AllocLights
82
PR_GetAmbientLight
82
PR_GetLightColor
83
PR_GetLightFalloff
83
PR_GetLightPosition
84
PR_GetLightState
84
PR_GetLightStrength
85
PR_GetLightType
85
PR_SetAmbientLight
86
PR_SetLightColor
86
PR_SetLightFalloff
87
PR_SetLightOff
87
PR_SetLightOn
88
PR_SetLightPosition
88
PR_SetLightStrength
89
PR_SetLightType
89
PR_TransformLights
90
Material Interface
91
PR_AddMaterial
92
PR_AllocMaterials
92
PR_DeleteAllMaterials
93
PR_DeleteMaterial
93
PR_FindMaterial
94
PR_GetMaterialAlpha
94
PR_GetMaterialBaseColor
95
PR_GetMaterialColor
95
PR_GetMaterialEnvironmentAxis
96
PR_GetMaterialEnvironmentMap
96
PR_GetMaterialMethod
97
PR_GetMaterialMipMap
97
PR_GetMaterialMipMapShift
98
PR_GetMaterialMipMapState
98
PR_GetMaterialName
99
PR_GetMaterialShades
99
PR_GetMaterialTable
100
PR_GetMaterialTexture
100
PR_GetMipMapDepth
100
PR_GetMipMapShrink
101
PR_GetMipMapState
101
PR_ReturnMethodName
101
PR_SetMaterialAlpha
102
PR_SetMaterialBaseColor
102
PR_SetMaterialColor
103
PR_SetMaterialEnvironmentAxis
103
PR_SetMaterialEnvironmentMap
104
PR_SetMaterialMethod
104
PR_SetMaterialMipMap
105
PR_SetMaterialMipMapShift
105
PR_SetMaterialMipMapState
106
PR_SetMaterialName
106
PR_SetMaterialShades
107
PR_SetMaterialTable
107
PR_SetMaterialTexture
108
PR_SetMipMapDepth
108
PR_SetMipMapShrink
108
PR_SetMipMapState
109
PR_SetObjectMaterial
109
PR_SetSegmentMaterial
110
Texture Interface
111
PR_AddTexture
112
PR_AllocTextures
112
PR_DeleteAllTextures
113
PR_DeleteTexture
113
PR_FindMostCommonColor
114
PR_FindTexture
114
PR_GetImageType
114
PR_LoadTexture
115
PR_SetTextureFormat
116
PR_SetTexturePath
117
Mip Map Interface
119
PR_MipMapCreate
120
Shade Table Interface
121
PR_AddShadeTable
122
PR_AllocShadeTables
122
PR_BuildFogTable
123
PR_BuildGouraudTable
123
PR_BuildPhongTable
124
PR_BuildTranslucentTable
125
PR_ClosestColor
125
PR_DeleteAllShadeTables
126
PR_DeleteShadeTable
126
PR_FindShadeTable
127
PR_LoadTable
127
PR_SaveTable
128
PR_SetTablePath
128
Viewport Interface
129
PR_ClearViewport
130
PR_CloseViewport
130
PR_OpenViewport
131
PR_ResizeViewport
132
PR_SetViewPort
132
PR_ShowViewport
133
Rendering Interface
135
PR_AddElement
136
PR_DepthBiasLevel
137
PR_DepthBufferFunction
137
PR_DepthBufferMode
138
PR_DepthMask
138
PR_Initialize
139
PR_RenderEntity
139
PR_RenderFrame
140
PR_RenderSegment
140
PR_SetFogColor
141
PR_SetFogState
141
PR_SetFogRange
142
PR_SetPerspectiveDivisions
142
PR_Shutdown
143
PR_TexFilterMode
143
Rendering Statistics Interface
145
PR_StatPixelsDrawn
146
PR_StatScansDrawn
146
PR_StatElementsDrawn
146
Graphical User Interface
147
PRGUI_Button
148
PRGUI_ChoiceDialog
148
PRGUI_DeinitTimer
149
PRGUI_DrawMouse
149
PRGUI_editstring
150
PRGUI_Error
150
PRGUI_FileExists
151
PRGUI_GoStartPath
151
PRGUI_GoUserPath
151
PRGUI_HideMouse
152
PRGUI_HitButton
152
PRGUI_InitializeSVGA
153
PRGUI_InitMouse
153
PRGUI_InitPath
154
PRGUI_InitTimer
154
PRGUI_LoadCursor
154
PRGUI_printf
155
PRGUI_SetUserPath
155
PRGUI_ShowMouse
156
PRGUI_ShutdownSVGA
156
PRGUI_textbutton
157
PRGUI_WaitTicks
157
PRGUI_WaitTicksWithBreak
158
Matrix Interface
159
PR_GetAngle
160
PR_MatrixClear
160
PR_MatrixIdentity
161
PR_MatrixMultiply
161
PR_MatrixRotate
162
PR_MatrixScale
162
PR_MatrixTranslate
163
PR_MatrixTranspose
163
PR_Transform
164
Quaternion Interface
166
PR_QuaternionConjugate
167
PR_QuaternionFromVector
167
PR_QuaternionMultiply
168
PR_QuaternionSlerp
168
PR_QuaternionToMatrix
169
Morph Interface
170
PR_Morph
171
PR_MorphWithNormals
171
Terrain Interface
172
PR_AllocateTerrain
173
PR_GetTerrainByte
174
PR_GetTerrainWord
174
PR_GetTerrainHeight
175
PR_LoadTerrain
176
PR_TransformTerrain
177
PR_UpdateTerrain
177
PR_TerrainWaveFunction
178
PR_TerrainModify
178
Sound Interface
179
PRSND_AddSound
180
PRSND_Alloc3DSound
180
PRSND_AllocSounds
181
PRSND_CloseAudio
181
PRSND_CloseVoices
182
PRSND_DeleteAllSounds
182
PRSND_DeleteSound
183
PRSND_FindDevices
183
PRSND_FindFreeVoice
184
PRSND_FindSound
184
PRSND_FreeSong
185
PRSND_Get3DSoundStatus
185
PRSND_GetLength
186
PRSND_Initialize
186
PRSND_InitializeVoices
187
PRSND_LoadSong
187
PRSND_LoadSound
188
PRSND_OpenAudio
188
PRSND_Play3DSound
189
PRSND_PlaySong
189
PRSND_SetLoopEnd
190
PRSND_SetLoopMode
190
PRSND_SetLoopStart
191
PRSND_SetOrigin
191
PRSND_SetSongVolume
192
PRSND_SetSoundPath
192
PRSND_StopSong
192
PRSND_Set3DSoundCoordinate
193
PRSND_Set3DSoundPanning
193
PRSND_Set3DSoundPanningFactor
194
PRSND_Set3DSoundPanningMode
194
PRSND_Set3DSoundShiftFactor
195
PRSND_Set3DSoundShiftMode
195
PRSND_Set3DSoundShiftSlide
196
PRSND_Set3DSoundVolume
196
PRSND_Set3DSoundVolumeFactor
197
PRSND_Set3DSoundVolumeMode
197
PRSND_Update3DSound
198
PRSND_UpdateVoices
198
Particle Interface
200
PR_AllocParticles
201
PR_AllocEmitters
201
PR_CreateEmitter
201
PR_CreateParticle
202
PR_InitializeEmitterType
202
PR_InitializeParticleType
202
PR_SetEmitterBounceParameters
203
PR_SetEmitterCollisionAction
204
PR_SetEmitterCollisionProc
204
PR_SetEmitterDelay
205
PR_SetEmitterGravity
205
PR_SetEmitterMovement
205
PR_SetEmitterNumParticles
206
PR_SetEmitterParticleType
206
PR_SetEmitterRandomDistance
207
PR_SetEmitterRandomVelocity
207
PR_SetEmitterRotation
208
PR_SetEmitterSpawnProc
208
PR_SetEmitterTimeLimit
209
PR_SetParticleAlpha
209
PR_SetParticleAnimation
210
PR_SetParticleCollisionProc
211
PR_SetParticleDrag
211
PR_SetParticleDrawProc
212
PR_SetParticleEntity
212
PR_SetParticleGravity
213
PR_SetParticleMovement
213
PR_SetParticleScale
214
PR_SetParticleTimeLimit
214
PR_UpdateEmitters
215
PR_UpdateParticles
215
Collision Interface
216
PRCL_AllocPolytope
217
PRCL_CreatePolytope
217
PRCL_DistanceToPlane
218
PRCL_PlaneFromPoints
218
PRCL_RayClip
219
PRCL_RayFromPoints
219
PRCL_RayIntersectsBox
220
PRCL_RayIntersectsPlane
220
PRCL_RayIntersectsPolytope
221
PRCL_RayIntersectsTriangle
221
PRCL_TransformPlane
222
PRCL_TransformPolytope
222
Appendix A - Render Method List
223
Appendix B - Image Format List
231

1.0 Global Variables and Structures

Power Render contains many variables and structures. These can be used to gain access to the inner workings of Power Render.

1.1 The PR_Settings Structure

A global settings structure contains many of the parameters used for rendering. It is defined as follows:

typedef struct

 {

 PR_DWORD

xhalf;

 PR_DWORD

yhalf;

 PR_UCHAR

MipMap;

 PR_UCHAR

MipMapShrink;

 PR_REAL

MipDepth1;

 PR_REAL

MipDepth2;

 PR_REAL

MipDepth3;

 PR_REAL

MipDepth4;

 PR_DWORD

HardwareMipmaps;

 PR_UCHAR

FrontToBack;

 PR_UCHAR

DepthSort;

 PR_UCHAR

RealUV;

 PR_UCHAR

Hardware;

 PR_REAL

Fog_Far;

 PR_REAL

Fog_Near;

 PR_REAL

Fog_Spread;

 PR_UCHAR

Fog_Enabled;

 PR_UCHAR

LoadPalette;

 PR_DWORD

FirstTexture;

 PR_REAL

MinUV;

 PR_REAL

MaxUV;

 PR_UDWORD

TextureMemory;

 PR_UCHAR

FlipNormals;

 PR_UCHAR UseZbuffer;
/* For OpenGL only */

 PR_UCHAR UseWindowed;
/* Win32 Glide, D3D, OpenGL */

 PR_UCHAR UseBilinear;
/* For OpenGL only */

 PR_UCHAR Use32Bit;
/* Direct3D only */

 PR_UCHAR UseAGP;
/* Direct3D Only */

 PR_UCHAR UseTrilinearFiltering; /* Direct3D only */

 PR_UCHAR UseTripleBuffering; /* Direct3D only */

} PR_SettingsStruct;

extern PR_SettingsStruct PR_Settings;

Of those listed, the following are useful to an application programmer:

Variable
Description

MipMap
FALSE if mipmapping is disabled

TRUE if mipmapping is enabled

This must be turned on for any materials to use mipmapping.

MipMapShrink
if TRUE, the engine will divide texture coordinates by two for every mip level. You might want to use the mipmapping to just change materials instead of textures. If this flag is FALSE, the texture coordinates will remain the same but the material can change.

MipDepth1, MipDepth2, MipDepth3, MipDepth4
Depth values (0-65535) for mipmap levels

If a polygon is farther away then MipDepth1, and closer than MipDepth2, it uses the first mipmap.

HardwareMipmaps
Number of mipmaps to generate for 3D cards

The default is 1, which just keeps the original texture.

-1 will create all the sizes possible for the card

FrontToBack
0 will use back to front rendering.

1 will use front to back with no overdraw.

When this mode is turned on, color keyed (transparent) or translucent polygons cannot be used. This applies to 8 bit software rendering only

DepthSort
This controls the sorting used by the software renderer.

Valid values are:

NO_SORT, FARTHEST_ZSORT, NEAREST_ZSORT, AVERAGE_ZSORT

Using NO_SORT will allow you to draw triangles in the order they are passed to the renderer (if you have a BSP tree or other sorting method).

RealUV
If TRUE, the current device stores texture UV coordinates in floating point

Hardware
TRUE if an accelerator is used

This must be set to TRUE before you call PR_Initialize when using D3D for hardware support.

LoadPalette
TRUE if a palette is loaded into global_palette when loading a texture.

FirstTexture
This is the first texture number use by the PRO saving routines. This is used to skip over the mouse cursor texture in the utilities.

MinUV
The minimum texture UV coordinate for hardware

MaxUV
The maximum texture UV coordinate for hardware. Some cards need 1.0, while others need 255.0

TextureMemory
Amount of texture memory on 3D card

FlipNormals
If TRUE, backface culling is reversed. This is useful when rendering a reflected version of a mesh.

UseZbuffer
Used by the OpenGL version only. If TRUE uses zbuffering.

UseWindowed
If TRUE uses a full screen window. This can be used with Win32 Glide, D3D, or OpenGL.

UseBilinear
Used by the OpenGL version only. If TRUE uses bilinear filtering. This is only recommended if you are using a hardware OpenGL driver.

Use32Bit
Used by the Direct3D version only. If TRUE uses 32 bit color instead of 16 bit. Not all cards support 32 bit color.

UseAGP
Used by the Direct3D version only. If TRUE uses AGP textures if available.

UseTrilinearFiltering
Used by the Direct3D version only. If TRUE uses Trilinear filtering when mipmapping is enabled.

UseTripleBuffering
Used by the Direct3D version only. If TRUE uses triple buffering. Not all cards have enough video memory for this feature.

1.2 The Rendering Device Structure

Power Render has a structure that holds information about the current rendering device.

This is filled in when the device is initialized.

typedef struct

{

 PR_DWORD
devicetype;

 char

chiptype[20];
/* Name of chip */

 char

boardtype[40];
/* Type of board */

 PR_DWORD
version;

 PR_DWORD
width, height;
/* Width and height of screen */

 PR_DWORD
pitch;

/* Pitch of display surface */

 PR_DWORD
pages;

/* Number of pages available */

 PR_DWORD
bitdepth;

/* Number of bits per pixel */

 PR_DWORD
rate;

} PR_DEVICE;

extern PR_DEVICE PR_OutputDevice;

1.3 Video Modes List

After a device is initialized, a list of available video modes is created. This is defined as:

typedef struct {

 PR_DWORD mode_number;

 PR_DWORD width;

 PR_DWORD height;

 PR_DWORD bits;

 PR_DWORD linear;

 PR_DWORD available;

 PR_DWORD pages;

 } PRMODE_DESC;

extern PRMODE_DESC PR_VideoModes[256];

The number of modes stored in this list is not stored in a variable. Instead, a mode number of –1 indicates the end of the list.

1.4 The Viewport Structure

The viewport contains information about a rectangular region on the device’s display, which contains a view of the world.

typedef struct {

 PR_REAL
width;

 PR_REAL
height;

 PR_REAL
centerx;

/* Not used */

 PR_REAL
centery;

/* Not used */

 PR_DWORD
topx, topy;

/* Clipping boundary */

 PR_DWORD
bottomx, bottomy;

 PR_REAL
xscale, yscale;

/* Scaling factors */

 block

current_frame;

 block

previous_frame;

/* Not used */

 PR_DWORD
shadetable;

/* Not used */

 PR_UCHAR *
zbuffer;

/* Not used */

 PR_DWORD
zbuffer_bits;

/* Not used */

 PR_DWORD
zbuffer_scale;

/* Not used */

 PR_REAL
parallel_scale;

/* Not used */

 PR_DWORD
flags;

 } PR_VIEWPORT;

extern PR_VIEWPORT active_viewport;

You can find out more about the variables used by Power Render by reading the include files found in the pr\include and pr\winclude directories.

2.0 Application Programmer Interfaces

Device Interface[image: image2.wmf]
Source code files: PRVIRT.C, PRHRDWRE.C

The Device Interface provides functions for initializing, detecting, and shutting down different display devices.

PR_BeginScreen

Function:
Initializes a buffer for direct memory access

Declaration:
void PR_BeginScreen (void)

Remarks:
Before drawing to a frame buffer directly, you must first get a valid pointer to it. Under Windows this means locking the buffer. Different methods exist depending on which device you are using. After you finish writing to the buffer, you must use the PR_EndScreen routine. The current screen being used is determined by the PR_OpenScreen routine.

Parameters:
None

Return Value:
None

See Also:
PR_EndScreen, PR_OpenScreen

PR_Detect3Dfx

Function:
Looks for the presence of a 3Dfx accelerated card.

Declaration:
PR_DWORD PR_Detect3Dfx (void)
Remarks:
Before a 3Dfx card is initialized, you must first detect the card and set up Glide. This routine will return TRUE if a 3Dfx based card is found.

Parameters:
None

Return Value:
TRUE if a 3Dfx card was found.

See Also:
PR_Shutdown3Dfx

PR_DetectSVGA

Function:
Looks for the presence of SVGA hardware

Declaration:
PR_DWORD PR_DetectSVGA (void)
Remarks:
This will look for SVGA hardware and a VESA driver. If VESA 2.0 is found, linear frame buffers will be used. If VESA 1.2 is found, page flipping is done with buffers in conventional memory. All valid video modes are added to the PR_VideoModes array if the hardware is detected.

Parameters:
None

Return Value:
TRUE if SVGA hardware was found.

See Also:
PR_DetectVGA, PR_InitializeSVGA

PR_DetectVGA

Function:
Looks for the presence of VGA hardware

Declaration:
PR_DWORD PR_DetectVGA (void)
Remarks:
This will look for VGA hardware. Currently the function always returns TRUE and adds the 320x200 mode to the PR_VideoModes array.

Parameters:
None

Return Value:
TRUE

See Also:
PR_DetectSVGA, PR_InitializeVGA

PR_EndScreen

Function:
Closes a screen after direct frame buffer access

Declaration:
void PR_EndScreen (void)
Remarks:
On some device, you will have to tell when you are finished drawing to a buffer. Under Windows this is similar to unlocking the surface.

Parameters:
None

Return Value:
None

See Also:
PR_BeginScreen, PR_OpenScreeny

PR_Flip

Function:
Swaps front and back buffers

Declaration:
void PR_Flip (PR_DWORD retrace)
Remarks:
This routine will swap between the front and back drawing buffers. Page flipping will be used if the displace device supports it. Otherwise, the entire buffer from conventional memory will be copied to the video memory.

Parameters:
retrace

- Number of times to wait for the vertical retrace

Return Value:
None

See Also:
PR_OpenScreen

PR_Initialize3Dfx

Function:
Initializes the 3Dfx hardware routines

Declaration:
void PR_Initialize3Dfx (void)
Remarks:
This will set up Power Render for use with 3Dfx based cards.

Parameters:
None

Return Value:
None

See Also:
PR_Detect3Dfx, PR_Shutdown3Dfx

PR_InitializeSVGA

Function:
Initializes the SVGA hardware routines

Declaration:
void PR_InitializeSVGA (void)
Remarks:
This will set up Power Render for use with SVGA based cards.

Parameters:
None

Return Value:
None

See Also:
PR_DetectSVGA, PR_ShutdownSVGA

PR_InitializeVGA

Function:
Initializes the VGA hardware routines

Declaration:
void PR_InitializeVGA (void)
Remarks:
This will set up Power Render for use with VGA based cards.

Parameters:
None

Return Value:
None

See Also:
PR_DetectVGA, PR_ShutdownVGA

PR_OpenScreen

Function:
Selects a buffer to draw on

Declaration:
void PR_OpenScreen (PR_DWORD screen)

Remarks:
The PR_OpenScreen routine is used select the current buffer for drawing. You can select either the PR_FRONTBUFFER or the PR_BACKBUFFER. If you select the front buffer in a banked SVGA mode, slower graphics routines that use bank switching checks are used. Not all commands from the WGT library will work on the front buffer if bank switching is required, however the ones included in the PRGFX interface will work regardless of which mode you are using.

Parameters:
screen

- PR_FRONTBUFFER or PR_BACKBUFFER
Return Value:
None

See Also:
PR_BeginScreen, PR_EndScreen

PR_SetMode

Function:
Attempts to initialize a video mode

Declaration:
PR_DWORD PR_SetMode (PR_DWORD width,

PR_DWORD height, PR_DWORD refresh_rate)
Remarks:
This routine will initialize a video mode given the screen resolution. It will find the appropriate mode from the valid modes found in the PR_VideoModes array. The refresh rate parameter is provided for compatibility with 3D hardware and DirectDraw. Under normal SVGA and VGA modes, the refresh rate parameter is not used.

Parameters:
width

- Width of mode

height

- Height of mode

refresh_rate

- Refresh rate of display

Return Value:
MODE_INVALID - A mode with the resolution requested does not exist

MODE_NOT_SUPPORTED - The mode cannot be used by Power Render

MODE_SUCCESS - The mode was initialized

MODE_BAD_INFO - The SVGA mode info block was invalid

PR_Shutdown3Dfx

Function:
Shuts down a 3Dfx display device

Declaration:
void PR_Shutdown3Dfx (void)
Remarks:
This will free any memory required by Glide and shut down the 3Dfx drivers.

Parameters:
None

Return Value:
None

See Also:
PR_Initialize3Dfx

PR_ShutdownSVGA

Function:
Shuts down a SVGA display device

Declaration:
void PR_ShutdownSVGA (void)
Remarks:
This will shut down the SVGA display device.

Parameters:
None

Return Value:
None

See Also:
PR_InitializeSVGA

PR_ShutdownVGA

Function:
Shuts down a VGA display device

Declaration:
void PR_ShutdownVGA (void)
Remarks:
This will shut down the VGA display device.

Parameters:
None

Return Value:
None

See Also:
PR_InitializeVGA

Graphics Interface

Source code files: PRGFX.C, FXGFX.C

The Graphics Interface provides functions for basic 2D graphics, such as clearing the screen, drawing lines, and image manipulation.

PR_SetConstantZ

Function:
Sets the Z value used for 2D primitives

Declaration:
void PR_SetConstantZ (PR_REAL zval)

Remarks:
When using 3D hardware, 2D graphics functions such as PRGFX_ResizeTexture and PRGFX_Bar write out a Z value to the Zbuffer. This function controls which value the primitive will use. This allows you to mix 2D images with 3D rendered objects.

Parameters:
zval

- Z Distance (0 to 65535)

Return Value:
None

PRGFX_Bar

Function:
Draws a bar (filled rectangle)

Declaration:
void PRGFX_Bar (PR_DWORD x0, PR_DWORD y0,

PR_DWORD x1, PR_DWORD y1)
Remarks:
The rectangular region between (x0, y0, x1, y1) will be filled with the current color, set with PRGFX_SetColor.

Parameters:
x0

- Left x coordinate of region

y0

- Top y coordinate of region

x1

- Right x coordinate of region

y1

- Bottom y coordinate of region

Return Value:
None

See Also:
PRGFX_SetColor
PRGFX_ClearScreen

Function:
Clears the current screen

Declaration:
void PRGFX_ClearScreenVGA (void)
Remarks:
This routine will clear the entire screen regardless of clipping coordinates. The color is set by PRGFX_SetColor.

Parameters:
None

Return Value:
None

See Also:
PRGFX_SetColor

PRGFX_Clip

Function:
Sets the clipping region in device coordinates

Declaration:
void PRGFX_Clip (PR_DWORD x0, PR_DWORD y0,

PR_DWORD x1, PR_DWORD y1)
Remarks:
Future calls to the graphics interface will be clipped to the region given. You should never set the region larger than the screen size.

Parameters:
x0

- Left x coordinate of region

y0

- Top y coordinate of region

x1

- Right x coordinate of region

y1

- Bottom y coordinate of region

Return Value:
None

PRGFX_HLine

Function:
Draws a horizontal line

Declaration:
void PRGFX_HLine (PR_DWORD x0, PR_DWORD x1,

 PR_DWORD y0)
Parameters:
x0

- Left x coordinate

x1

- Right x coordinate

y0

- y coordinate

Return Value:
None

See Also:
PRGFX_Line, PRGFX_VLine

PRGFX_Line

Function:
Draws a diagonal line

Declaration:
void PRGFX_Line (PR_DWORD x0, PR_DWORD y0,

PR_DWORD x1, PR_DWORD y1)
Parameters:
x0

- X coordinate of first endpoint

y0

- Y coordinate of first endpoint

x1

- X coordinate of second endpoint

y1

- Y coordinate of second endpoint

Return Value:
None

See Also:
PRGFX_HLine, PRGFX_VLine

PRGFX_MakeColor

Function:
Returns a color index closest to the RGB value given, or makes a packed RGBA value when 3D hardware is used.

Declaration:
PR_UDWORD PRGFX_MakeColor (PR_DWORD r, PR_DWORD g,

 PR_DWORD b)
Remarks:
This routine can be used to generate colors for either software or hardware rendering. The RGB values are in the range 0-63. If the color is not present in the global palette, the closest match will be used.

Parameters:
r

- Red component of color

g

- Green component of color

b

- Blue component of color

Return Value:
Color index or packed RGBA value

PRGFX_NewBlock

Function:
Grabs a section of the render buffer into conventional memory

Declaration:
block PRGFX_NewBlock (PR_DWORD x0, PR_DWORD y0,

PR_DWORD x1, PR_DWORD y1)
Remarks:
The data within the block is the same format at the render buffer. For example in all 8 bit modes, each pixel is represented by a single byte. In 16 bit modes used by 3D hardware, each pixel is represented by two bytes. In 8 bit modes, a block can be written to using the commands from WGT. However, these commands do not work in 16 bit modes and cannot be used in conjunction with 3D hardware.

It is primarily used for grabbing the background behind a sprite such as a mouse cursor.

Parameters:
x0

- Left x coordinate of region

y0

- Top y coordinate of region

x1

- Right x coordinate of region

y1

- Bottom y coordinate of region

Return Value:
Pointer to the block

See Also:
PRGFX_NewBlock

PRGFX_OutTextXY

Function:
Draws an unformatted string

Declaration:
void PRGFX_OutTextXY (PR_DWORD x, PR_DWORD y,

wgtfont font, char *string)
Remarks:
This outputs ASCII characters numbered 0-127 without formatting. For formatted output, use the PRGFX_printf routine.

Parameters:
x

- Left X coordinate of string

y

- Top Y coordinate of string

font

- Pointer to monochrome font

string

- The string to print

Return Value:
None

See Also:
PRGFX_printf

PRGFX_PutBlock

Function:
Pastes a block from conventional memory to video memory

Declaration:
void PRGFX_PutBlock (PR_DWORD x, PR_DWORD y,

PR_DWORD width, PR_DWORD height,

block src)
Remarks:
The format of the block must match the format used by the display device. For instance you cannot use this routine to put an 8 bit region onto a 16 bit display device. You can use PRGFX_PutBlock8bit for that purpose.

Parameters:
x

- Left X coordinate on destination screen

y

- Top Y coordinate on destination screen

width

- Width of the source image

height

- Height of the source image

src

- Pointer to the source image

Return Value:
None

See Also:
PRGFX_NewBlock, PRGFX_PutBlock8bit

PRGFX_PutBlock8bit

Function:
Pastes a 8bit image from conventional memory to video memory

Declaration:
void PRGFX_PutBlock8bit (PR_DWORD x, PR_DWORD y,

block src, color *pal, PR_DWORD method)

Remarks:
This routine is meant for backgrounds for menus. It should not be used in realtime since it takes time to convert from the 8bit image to the 16 bit display when using 3D hardware. When using 8 bit video modes, this routine is similar in operation to PRGFX_PutBlock
Parameters:
x

- Left X coordinate on destination screen

y

- Top Y coordinate on destination screen

src

- Pointer to the source image

pal

- Palette used by the 8 bit image

method

- NORMAL or XRAY (color 0 transparent)

Return Value:
None

See Also:
PRGFX_NewBlock, PRGFX_PutBlock

PRGFX_PutTexture

Function:
Displays a texture on the screen

Declaration:
void PRGFX_PutTexture (PR_DWORD x, PR_DWORD y,

 PR_DWORD texnum, PR_DWORD mode)
Parameters:
x

- Left X coordinate of texture

y

- Top Y coordinate of texture

texnum

- Texture number to display

mode

- NORMAL or XRAY

Return Value:
None

See Also:
PRGFX_ResizeTexture

PRGFX_Rectangle

Function:
Draws a rectangle (hollow bar)

Declaration:
void PRGFX_Rectangle (PR_DWORD x0, PR_DWORD y0,

PR_DWORD x1, PR_DWORD y1)
Remarks:
This will draw four lines which form a box around the region given.

Parameters:
x0

- Left x coordinate of rectangle

y0

- Top y coordinate of rectangle

x1

- Right x coordinate of rectangle

y1

- Bottom y coordinate of rectangle

Return Value:
None

See Also:
PRGFX_Bar

PRGFX_ResizeTexture

Function:
Resizes the texture into the specified area on the screen.

Declaration:
void PRGFX_ResizeTexture (PR_DWORD x0, PR_DWORD y0,

 PR_DWORD x1, PR_DWORD y1,

PR_DWORD texnum, PR_DWORD mode)
Remarks:
This routine is used resize a texture into a rectangle on the screen.

Parameters:
x0

- Left x coordinate of region

y0

- Top y coordinate of region

x1

- Right x coordinate of region

y1

- Bottom y coordinate of region

texnum

- Texture number

mode

- NORMAL or XRAY
Return Value:
None

See Also:
PRGFX_PutTexture

PRGFX_SetColor

Function:
Sets the current drawing color

Declaration:
void PRGFX_SetColor (PR_DWORD col)
Remarks:
When using software rendering, the parameter is an index into the global palette. When using hardware rendering, the parameter is a packed RGBA value created with PRGFX_MakeColor.

Parameters:
col

- Color value or index

Return Value:
None

See Also:
PRGFX_MakeColor

PRGFX_SetTextBackground

Function:
Sets the background color of text output.

Declaration:
void PRGFX_SetTextBackground (PR_DWORD col)
Remarks:
The background color of text output set to the color given. The color is either an index into the global palette when using software rendering, or a packed RGBA variable created with PR_MakeColor when using 3D hardware.

Parameters:
col

- Color of the background

Return Value:
None

See Also:
PRGFX_MakeColor, PRGFX_SetTextForeground, PRGFX_SetTextTransparent

PRGFX_SetTextForeground

Function:
Sets the background color of text output.

Declaration:
void PRGFX_SetTextForeground (PR_DWORD col)
Remarks:
The foreground color of text output set to the color given. The color is either an index into the global palette when using software rendering, or a packed RGBA variable created with PR_MakeColor when using 3D hardware.

Parameters:
col

- Color of the foreground

Return Value:
None

See Also:
PRGFX_MakeColor, PRGFX_SetTextBackground, PRGFX_SetTextTransparent

PRGFX_SetTextTransparent

Function:
Sets the transparent flag of text output

Declaration:
void PRGFX_SetTextTransparent (PR_DWORD mode)
Remarks:
You can make text be drawn using the foreground, background, or both. This allows you to draw text over an existing image, or clear it out instead.

Parameters:
mode

- TEXTFG, TEXTBG, or TEXTFGBG

Return Value:
None

See Also:
PRGFX_SetTextForeground, PRGFX_SetTextBackground

PRGFX_VLine

Function:
Draws a vertical line

Declaration:
void PRGFX_VLine (PR_DWORD x0, PR_DWORD y0,

 PR_DWORD y1)
Remarks:
This routine will draw a vertical line at the x0 column of the screen. The top endpoint is y0, and the bottom is y1.

Parameters:
x0

- X coordinate of line

y0

- Top y coordinate of line

y1

- Bottom y coordinate of line

Return Value:
None

See Also:
PRGFX_HLine, RGFX_Line

3D File Interface

Source code files: PRLFILE.C, PRSFILE.C, PR3DS.C

The 3D File Interface provides functions for loading and saving different 3D file formats. This is the most common way to load 3D mesh data into the rendering system.

PR_Load3DS

Function:
Loads a 3D Studio 3DS file into an object.

Declaration:
PR_OBJECT *PR_Load3DS (char *filename, PR_REAL scale,

 PR_DWORD flags)
Remarks:
The PR_Load3DS routine will load a 3D Studio .3DS file from disk into an object structure. Texture information is only available if you first use the 3DS2PRO utility. Instead of loading textures, you can create a palette containing shades which represent the materials. These colors are obtained from the diffuse component of each material used. If you plan on using this palette, set PR_BaseMaterialNumber to the first unused material, and PR_BaseMaterialColor to the first unused color in your palette. When you call PR_CreateMaterialPalette, all of the colors after PR_BaseMaterialColor will be used to make shades of the material colors.

Parameters:
filename

- filename of the 3DS file

scale

- Multiplied to each vertex coordinate

flags

- Allows you to ignore some portions of the 3DS file.

 Valid flags are:

 LOAD_NORMAL

 LOAD_IGNORE_MATERIALS

 LOAD_IGNORE_TEXTURES

Return Value:
 A pointer to the newly allocated object.

See Also:
PR_CreateMaterialPalette, PR_LoadPRO

PR_LoadLWO

Function:
Loads a Lightwave file into an object.

Declaration:
PR_OBJECT *PR_LoadLWO (char *filename, PR_REAL scale,

 PR_DWORD flags)
Remarks:
The PR_LoadLWO routine will load a Lightwave .LWO file from disk into an object structure. Textures are loaded if used. Instead of loading textures, you can create a palette containing shades which represent the materials. These colors are obtained from the diffuse component of each material used. If you plan on using this palette, set PR_BaseMaterialNumber to the first unused material, and PR_BaseMaterialColor to the first unused color in your palette. When you call PR_CreateMaterialPalette, all of the colors after PR_BaseMaterialColor will be used to make shades of the material colors.

Parameters:
filename

- filename of the LWO file

scale

- Multiplied to each vertex coordinate

flags

- Allows you to ignore some portions of the LWO file.

 Valid flags are:

 LOAD_NORMAL

 LOAD_IGNORE_MATERIALS (not used)

 LOAD_IGNORE_TEXTURES (not used)

Return Value:
 A pointer to the newly allocated object.

See Also:
PR_CreateMaterialPalette, PR_Load3DS, PR_LoadPRO

PR_LoadPRO

Function:
Loads a Power Render PRO file into an object, and loads the external data files needed to display the object.

Declaration:
PR_OBJECT *PR_LoadPRO (char *filename, PR_DWORD flags)
Remarks:
The PR_LoadPro routine will load a Power Render .PRO file from disk into an object structure. A PRO file also contains information about which textures, and shade tables are used by the object. If these elements are not loaded yet, it will load them from external files. Textures and tables are not stored inside the .PRO file. You can ignore materials, textures, and tables from the file using the flags parameter.

Parameters:
filename

- filename of the PRO file

flags

- Allows you to ignore some portions of the PRO file

 Valid flags are:

 LOAD_NORMAL

 LOAD_IGNORE_MATERIALS

 LOAD_IGNORE_TABLES

 LOAD_IGNORE_TEXTURES

You can combine the ignore flags by ORing them together. For example,

LOAD_IGNORE_MATERIALS | LOAD_IGNORE_TABLES
Return Value:
A pointer to the newly allocated object.

See Also:
PR_Load3DS, PR_SavePRO
PR_SavePRO

Function:
Saves an object to a Power Render PRO file.

Declaration:
PR_DWORD PR_SavePRO (char *filename, PR_OBJECT *obj,

PR_DWORD options)

Remarks:
The PR_SavePRO routine will save an object to disk in the Power Render .PRO format. There are two options available which control how materials, textures, and tables are stored in the file. If using the SAVE_USED_MATERIALS flag, only the materials used by the object will be saved into the file. If using the SAVE_ALL_MATERIALS flag, every material currently in memory will be saved into the file. Be careful with the second option because some of the utilities might save the used materials, and therefore erase the unused ones from being referenced in the file.

Parameters:
filename

- filename of the PRO file to save

obj

- Pointer to the object being saved

options

- Tells how to save the object. Valid options are:

 SAVE_USED_MATERIALS

 SAVE_ALL_MATERIALS

If you choose SAVE_USED_MATERIALS, only the materials used by the object will be saved in the file. This is the usual save mode.

If you choose SAVE_ALL_MATERIALS, every material currently in memory will be saved. This is

useful for editing programs where you are adding

new materials to be used later.

Return Value:
TRUE if the file was saved

See Also:
PR_LoadPRO, PR_Load3DS
Entity Interface

Source Code Files: PRENTITY.C

The Entity Interface provides functions for manipulating 3D entities. You can rotate, scale, and translate the entire entity and all of its segments.

PR_AllocEntity

Function:
Allocates space for a new entity structure
Declaration:
PR_ENTITY *PR_AllocEntity (void)
Remarks:
The PR_AllocEntity routine is used to allocate space for a new entity structure. It is used internally. Normally you will use the PR_CreateEntity routine which creates an entity given a previously loaded object definition.

Parameters:
None

Return Value:
Pointer to the newly allocated entity structure. Returns NULL if there is not enough memory.

See Also:
PR_FreeEntity

PR_AnimateEntity

Function:
Uses keyframe animation to animate an entity

Declaration:
void PR_AnimateEntity (PR_ENTITY *ent, PR_DWORD frame)
Remarks:
The PR_AnimateEntity routine is used to play keyframe animation. The animation information is stored in the object, and each instance of it can be animated with a unique frame number. The total number of frames in the animation can be found in the ent->shape->num_frames variables. Keyframe animation is usually imported from Lightwave or 3D Studio, but you can allocate the structures and initialize the values yourself. Camera keyframing is done with another routine called PR_AnimateCamera.
Parameters:
ent

- Pointer to the entity

frame

- Frame number (starts at 1)

Return Value:
None

See Also:
PR_AnimateCamera

PR_CreateEntity

Function:
Creates an entity given its shape definition and name

Declaration:
PR_ENTITY *PR_CreateEntity (PR_OBJECT *object, char *name)
Remarks:
After loading or creating an object which defines the vertices and faces of an object, you can create multiple instances of the shape called entities. This routine will make a new entity using the object and name given to it.

Parameters:
object

- Pointer to the object

name

- Name of the new entity

Return Value:
Pointer to the newly allocated entity

See Also:
PR_AllocEntity, PR_FreeEntity

PR_FreeEntity

Function:
Frees space used by an entity
Declaration:
void PR_FreeEntity (PR_ENTITY *entity)
Remarks:
The PR_FreeEntity routine is used to free the memory used by an entity. Note that the object used by the entity is not freed, because there may be other entities using it.

Parameters:
entity

- Pointer to the entity

Return Value:
None

See Also:
PR_AllocEntity

PR_GetEntityFlags

Function:
Returns the flags belonging to an entity
Declaration:
PR_DWORD PR_GetEntityFlags (PR_ENTITY *entity)
Remarks:
The PR_GetEntityFlags routine can be used to get the current flags of an entity. The flags are contained in a single PR_DWORD and may contain bits set by the rendering system.

Parameters:
entity

-Pointer to the entity

Return Value:
Flags belonging to the entity

See Also:
PR_SetEntityFlags

PR_MoveEntity

Function:
Moves the position of an entity, relative to its current position

Declaration:
void PR_MoveEntity (PR_ENTITY *entity,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_MoveEntity routine will move an entity in relation to its current position in world space by the amounts given.

Parameters:
entity

- Pointer to the entity

x

- Amount of displacement along X axis

y

- Amount of displacement along Y axis

z

- Amount of displacement along Z axis

Return Value:
None

See Also:
PR_TransformEntity, PR_PositionEntity, PR_RotateEntity, PR_ScaleEntity

PR_PositionEntity

Function:
Sets the position of an entity, in world space
Declaration:
void PR_PositionEntity (PR_ENTITY *entity,

 PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_PositionEntity routine is used to set the location of an entity in the world. If you want to move an object in relation to its current position, see PR_MoveEntity.

Parameters:
entity

- Pointer to the entity

x

- X coordinate in world space

y

- Y coordinate in world space

z

- Z coordinate in world space

Return Value:
None

See Also:
PR_TransformEntity, PR_MoveEntity, PR_RotateEntity, PR_ScaleEntity

PR_RotateEntity

Function:
Rotates an entity relative to its current position
Declaration:
void PR_RotateEntity (PR_ENTITY *entity,

 PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_RotateEntity routine sets the rotation of an entire entity. All segments within the entity are rotated as well.

Parameters:
entity

- Pointer to the entity

x

- Amount of rotation around the X axis

y

- Amount of rotation around the Y axis

z

- Amount of rotation around the Z axis

Return Value:
None

See Also:
PR_TransformEntity, PR_PositionEntity, PR_MoveEntity, PR_RotateEntityAbs, PR_ScaleEntity

PR_RotateEntityAbs

Function:
Sets the absolute rotation of an entity.

Declaration:
void PR_RotateEntityAbs (PR_ENTITY *entity,

 PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_RotateEntityAbs routine sets the rotation of an entire entity. All segments within the entity are rotated as well.

Parameters:
entity

- Pointer to the entity

x

- Amount of rotation around the X axis

y

- Amount of rotation around the Y axis

z

- Amount of rotation around the Z axis

Return Value:
None

See Also:
PR_TransformEntity, PR_PositionEntity, PR_MoveEntity, PR_RotateEntity, PR_ScaleEntity

PR_ScaleEntity

Function:
Sets the relative scale of an entity

Declaration:
void PR_ScaleEntity (PR_ENTITY *entity,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_ScaleEntity routine sets the scale of an entity.

Parameters:
entity

- Pointer to the entity

x

- Relative scale along X axis

y

- Relative scale along Y axis

z

- Relative scale along Z axis

Return Value:
None

See Also:
PR_TransformEntity, PR_PositionEntity, PR_MoveEntity, PR_RotateEntity, PR_ScaleEntityAbs

PR_ScaleEntityAbs

Function:
Sets the absolute scale of an entity

Declaration:
void PR_ScaleEntityAbs (PR_ENTITY *entity,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_ScaleEntityAbs routine sets the absolute scale of an entity.

Parameters:
entity

- Pointer to the entity

x

- Scale along X axis

y

- Scale along Y axis

z

- Scale along Z axis

Return Value:
None

See Also:
PR_TransformEntity, PR_PositionEntity, PR_MoveEntity, PR_RotateEntity, PR_ScaleEntity
PR_SetEntityFlags

Function:
Sets or clears entity flags

Declaration:
void PR_SetEntityFlags (PR_ENTITY *entity, PR_DWORD flags,

 PR_DWORD operation)
Remarks:
The PR_SetEntityFlags routine sets or clears the flags of an entity. The flags control the visibility state of the entity along with user defined flags. You can turn off rendering or transforming by using the flags FLAG_NORENDER and FLAG_NOTRANSFORM.

Usually you will want to turn off both to disable the entity, however some applications may require the entity to be transformed to use the vertices as a reference point in the world. This lets you create movable dummy objects that you cannot see.

Operation can be one of FLAG_SET or FLAG_CLEAR. Note that you can combine flags by ORing them together in the parameter.

Parameters:
entity

- Pointer to the entity

flags

- Possible flags are:

FLAG_NORENDER

FLAG_NOTRANSFORM

Use FLAG_NORENDER | FLAG_NOTRANSFORM to completely disable an entity.

Operation

Either FLAG_SET, FLAG_CLEAR, or FLAG_COPY
Return Value:
None

See Also:
PR_GetEntityFlags

PR_TransformEntity

Function:
Transforms an entity from object to world space
Declaration:
void PR_TransformEntity (PR_ENTITY *entity)

Remarks:
The PR_TransformEntity routine will transform an entity from object space to world space. The transformation is based on the current camera being used.

Note that the transformed coordinates are stored in the object structure not the entity structure. This means if you want to use the transformed coordinates, you must access them before any other entity using the object is transformed.

This is called when the camera changes, or the entity is scaled, rotated, or translated.

Parameters:
entity

- The entity to transform

Return Value:
None

See Also:
PR_PositionEntity, PR_MoveEntity, PR_RotateEntity, PR_ScaleEntity

Object Interface

Source Code Files: - PROBJECT.C, PRCOLLID.C

The Object Interface provides functions for manipulating objects, which hold the vertices and faces of a shape. Objects are just shape definitions. You must create an entity which uses the object before you can render it.

PR_AllocObject

Function:
Allocates space for an object

Declaration:
PR_OBJECT *PR_AllocObject (void)
Remarks:
The PR_AllocObject is used to allocate space for a new object structure. It is used internally. Normally you will load a 3D file from disk, which will automatically allocate the structure for you.

Parameters:
None

Return Value:
Pointer to the newly allocated object structure

See Also:
PR_FreeObject

PR_AllocSprite

Function:
Allocates space for a sprite

Declaration:
PR_OBJECT *PR_AllocSprite (PR_DWORD material)
Remarks:
A sprite is a special form of an object, which is a flat object that always faces the camera. It usually represents an object which is complex to be stored as a 3D mesh. This routine will create an object based on the size of the texture used in the material. You can rotate the sprite by rotating segment 0 of the entity around the z axis, or scale the sprite by scaling the entity about the x or y axis.

After creating the object, you can create an entity with it and manipulate the sprite as if it were a 3D object.

Parameters:
None

Return Value:
Pointer to the newly allocated object structure

See Also:
PR_FreeObject

PR_CenterObject

Function:
Centers an object around 0,0,0 in object space

Declaration:
void PR_CenterObject (PR_OBJECT *object,

 PR_REAL *x, PR_REAL *y, PR_REAL *z)
Remarks:
The PR_CenterObject routine will alter the vertices contained in an object. It is used to make an object rotate about its center.

It will return the amount each vertex was translated by in the last three parameters. You can use this information to return the vertices to their original positions.

Parameters:
object

- Pointer to the object

x

- Amount the object was translated along the X axis

y

- Amount the object was translated along the Y axis

z

- Amount the object was translated along the Z axis

Return Value:
None

See Also:
PR_TranslateObjectVertices
PR_FlipFaceNormals

Function:
Flips all of the face normals for an object

Declaration:
void PR_FlipFaceNormals (PR_OBJECT *object)
Remarks:
Sometimes you will want to change the direction of all the faces in an object. An example of this would be to view the interior of a cube or a room. Most 3D modellers make the normals pointing outwards from the center of the object, assuming that the camera will be outside the object. You should call PR_InitializeFaceNormals and PR_InitializeVertexNormals after flipping the face normals.

Parameters:
object

- Pointer to the object

Return Value:
None

See Also:
PR_InitializeFaceNormals, PR_InitializeVertexNormals

PR_FreeObject

Function:
Frees an object and all its segments

Declaration:
void PR_FreeObject (PR_OBJECT *object)
Remarks:
The PR_FreeObject routine will free the memory used by an object. It does this by first deallocating the segments within the object, and then the object itself.

Parameters:
object

- Pointer to the object

Return Value:
None

See Also:
PR_AllocObject
PR_GetObjectFaces

Function:
Returns the number of faces in an object

Declaration:
void PR_GetObjectFaces (PR_OBJECT *object)
Remarks:
The PR_GetObjectFaces routine will return the total number of faces in the object. It does this by counting the faces from each segment in the object.

Parameters:
object

- Pointer to the object

Return Value:
Number of faces

See Also:
PR_GetObjectVertices

PR_GetObjectVertices

Function:
Returns the number of vertices in an object

Declaration:
void PR_GetObjectVertices (PR_OBJECT *object)
Remarks:
The PR_GetObjectVertices routine will return the total number of vertices in the object. It does this by counting the vertices from each segment in the object.

Parameters:
object

- Pointer to the object

Return Value:
Number of vertices

See Also:
PR_GetObjectFaces

PR_InitializeFaceNormals

Function:
Initializes the face normals of an object

Declaration:
void PR_InitializeFaceNormals (PR_OBJECT *object)
Remarks:
Before an object can be displayed, you must first find out which direction the faces are pointing towards. The PR_InitializeFaceNormals routine will calculate the normals for all of the faces in an object. If you require Gouraud shading, you must also call PR_InitializeVertexNormals after this. If you are using flat shading, only this routine is required.

Note that the 3D file converters save the normals after importing them, so you do not need to use this routine when loading from a file.

Parameters:
object

- Pointer to the object

Return Value:
None

See Also:
PR_FlipFaceNormals, PR_InitializeVertexNormals

PR_InitializeVertexNormals

Function:
Initializes the normals of all the vertices in an object

Declaration:
void PR_InitializeVertexNormals (PR_OBJECT *object)
Remarks:
Before an object can be displayed with Gouraud shading, you must first find out which direction the vertices are pointing towards. The PR_InitializeVertexNormals routine will calculate the normals for all of the vertices in an object. You must have previously called PR_InitializeFaceNormals.

Note that the 3D file converters save the normals after importing them, so you do not need to use this routine when loading from a file.

Parameters:
object

- Pointer to the object

Return Value:
None

See Also:
PR_FlipFaceNormals, PR_InitializeFaceNormals
PR_SetObjectFaceFlags

Function:
Sets or clears the flags of all faces within an object

Declaration:
void PR_SetObjectFaceFlags (PR_OBJECT *object,

PR_UCHAR flags, PR_DWORD operation)
Remarks:
The PR_SetObjectFaceFlags routine operates similar to the PR_SetEntityFlags, only it sets or clears flags belonging to all the faces within an object.

Valid flags are:

FFLAG_VISIBLE_NOW
(visible in the last frame rendered)

FFLAG_FRONT_VISIBLE
(front was visible last frame rendered)

FFLAG_BACK_VISIBLE
(back was visible last frame rendered)

FFLAG_SELECTED

(face is selected)

Parameters:
object

- Pointer to the object

flags

- Flags to set or clear in each face of the object

Operation

Either FLAG_SET, FLAG_CLEAR, or FLAG_COPY
Return Value:
None

PR_TranslateObjectVertices

Function:
Translates all vertices in an object by x,y,z

Declaration:
void PR_TranslateObjectVertices (PR_OBJECT *object,

PR_REAL x, PR_REAL y, PR_REAL z)
Remarks:
The PR_TranslateObjectVertices routine will move every vertex in an object by a specified amount. This is used to change the pivot point of an object (the point it rotates around).

Parameters:
object

- Pointer to the object

x

- Amount to translate along the X axis

y

- Amount to translate along the Y axis

z

- Amount to translate along the Z axis

Return Value:
None

See Also:
PR_CenterObject
Segment Interface

Source Code Files- PRSEG.C, PRCOLLID.C

The Segment Interface provides functions for manipulating segments within an object. You can rotate, scale, and translate each segment and its children.

PR_AllocSegment

Function:
Allocates space for a segment

Declaration:
PR_SEGMENT *PR_AllocSegment (void)
Remarks:
The PR_AllocSegment routine will allocate space for a single segment structure. All elements of the structure are set to 0, and it is up to you to define them before using the segment.

Parameters:
None

Return Value:
Pointer to the newly allocated segment structure

See Also:
PR_FreeSegment
PR_FindSegment

Function:
Finds a segment given its name

Declaration:
PR_SEGMENT *PR_FindSegment (PR_ENTITY *entity,

 char *name)
Remarks:
The PR_FindSegment routine will return a pointer to a segment given its name and entity.

Parameters:
entity

- Entity that contains the segment

name

- Name of the segment

Return Value:
Pointer to the segment within the entity

PR_FreeSegment

Function:
Frees a segment.

Declaration:
void PR_FreeSegment (PR_SEGMENT *seg)
Remarks:
The PR_FreeSegment routine will free the memory used by a segment.

Parameters:
seg

- Pointer to the segment to deallocate

Return Value:
None

See Also:
PR_AllocSegment
PR_MoveSegment

Function:
Moves a segment relative to its current location.

Declaration:
void PR_MoveSegment (PR_ENTITY *entity,

PR_DWORD segnum,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_MoveSegment routine is used for translating a segment. The vector given is added to the current position of the segment .

This routine does NOT change the default orientation of the segment, as defined by an object.

Parameters:
entity

- Pointer to the entity containing the segment

segnum

- Segment number

x

- Amount to move in X direction

y

- Amount to move in Y direction

z

- Amount to move in Z direction

Return Value:
None

PR_PositionSegment

Function:
Sets the position of a segment relative to the segment’s pivot point.

Declaration:
void PR_PositionSegment (PR_ENTITY *entity,

PR_DWORD segnum,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_PositionSegment routine is used for translating a segment. The position of a segment is relative to the center of the object it belongs to.

This routine does NOT change the default orientation of the segment, as defined by an object.

Parameters:
entity

- Pointer to the entity containing the segment

segnum

- Segment number

x

- X location relative to center of object

y

- Y location relative to center of object

z

- Z location relative to center of object

Return Value:
None

PR_RotateSegment

Function:
Rotates a segment

Declaration:
void PR_RotateSegment (PR_ENTITY *entity, PR_DWORD segnum,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_RotateSegment routine will rotate a segment relative to its current rotation.

This routine does NOT change the default orientation of the segment, as defined by an object.

Parameters:
entity

- Pointer to the entity containing the segment

segnum

- Segment number

x

- Relative rotation about the X axis

y

- Relative rotation about the Y axis

z

- Relative rotation about the Z axis

Return Value:
None

PR_RotateSegmentAbs

Function:
Rotates a segment

Declaration:
void PR_RotateSegmentAbs (PR_ENTITY *entity,

PR_DWORD segnum,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_RotateSegmentAbs routine will set the rotation of a segment about its pivot point. The rotation value is the absolute rotation around each axis.

This routine does NOT change the default orientation of the segment, as defined by an object.

Parameters:
entity

- Pointer to the entity containing the segment

segnum

- Segment number

x

- Absolute rotation about the X axis

y

- Absolute rotation about the Y axis

z

- Absolute rotation about the Z axis

Return Value:
None

PR_ScaleSegmentAbs

Function:
Scales a segment

Declaration:
void PR_ScaleSegmentAbs (PR_ENTITY *entity,

PR_DWORD segnum, PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_ScaleSegmentAbs routine will set the scale of a segment.

Parameters:
entity

- Pointer to the entity containing the segment

segnum

- Segment number

x

- Absolute scale about the X axis

y

- Absolute scale about the Y axis

z

- Absolute scale about the Z axis

Return Value:
None

PR_TransformVertexList

Function:
Transforms and projects a list of vertices

Declaration:
void PR_TransformVertexList (PR_VERTEX *list,

PR_VERTEX_DATA *vlistdata, PR_DWORD numvert, PR_MATRIX transform_mat)

Remarks:
The PR_TransformVertexList routine will transform and project a list of vertices, and fill the vlistdata structure with the resulting data. This can be used to transform the vertices used by individual face.

Parameters:
vlist

- Pointer to the original vertices

vlist_data

- Pointer to the vertex data, where the results are

numvert

- Number of vertices in the list

transform_mat

- Transformation matrix

Return Value:
None

Camera Interface

Source Code Files - PRCAM.C

The Camera Interface provides functions for manipulating cameras in the world.

Every application requires at least one camera in order to view the scene.

PR_AddCamera

Function:
Adds a camera to the world camera list

Declaration:
void PR_AddCamera (PR_CAMERA *newcamera)
Remarks:
The PR_AddCamera routine will add a camera structure to a list of cameras kept in the world. Note that you do not have to add a camera to this list in order to use it. The list is a way of keeping track of stationary cameras that are positioned strategically around the world.

Parameters:
newcamera

- Pointer to a camera structure

Return Value:
None

See Also:
PR_FindCamera, PR_FindClosestCamera

PR_AllocCamera

Function:
Allocates space for a new camera

Declaration:
PR_CAMERA *PR_AllocCamera (void)
Remarks:
The PR_AllocCamera routine allocates space for a new camera structure.

Parameters:
None

Return Value:
Pointer to the newly allocated camera structure

See Also:
PR_FreeCamera

If the camera is meant to aim at a specific segment within an entity, you must call the PR_AttachCameraEntity function once before this routine is called.

PR_AnimateCamera

Function:
Uses keyframe animation to animate a camera

Declaration:
void PR_AnimateCamera (PR_CAMERA *cam, PR_DWORD frame)
Remarks:
The PR_AnimateCamera routine is used to play keyframe animation. The animation information is stored in the camera structure. The total number of frames in the animation can be found in the cam->num_frames variable. Keyframe animation is usually imported from Lightwave or 3D Studio, but you can allocate the structures and initialize the values yourself. Entity keyframing is done with another routine called PR_AnimateEntity.

If the camera is meant to aim at a specific segment within an entity, you must call the PR_AttachCameraEntity function once before this routine is called.

Parameters:
cam

- Pointer to the camera

frame

- Frame number (starts at 1)

Return Value:
None

See Also:
PR_AnimateEntity, PR_AttachCameraEntity

PR_AttachCameraEntity

Function:
Tells keyframe animation which entity a camera belongs to.

Declaration:
void PR_AttachCameraEntity (PR_CAMERA *cam,

PR_ENTITY *ent)
Remarks:
The PR_AttachCameraEntity routine is used to tell which entity a keyframed camera should look at. If the CAMFLAG_TARGET_SEGMENT flag is set, the cam->target_segment variable will tell which segment number to aim at. However you must set which entity contains this segment.

Parameters:
cam

- Pointer to the camera

ent

- Pointer to the entity

Return Value:
None

See Also:
PR_AnimateCamera

PR_CameraDirection

Function:
Make a normalized vector from source to dest of camera

Declaration:
void PR_CameraDirection (PR_CAMERA *cam)
Remarks:
Sometimes you will need to find the direction vector of the camera for aligning missiles or dollying the camera itself. This routine will calculate the vector and store it in the cam->direction vector.

Parameters:
cam

- Pointer to the camera

Return Value:
None

See Also:
PR_FreeCamera

PR_DeleteCamera

Function:
Deletes a camera from the world, given its pointer

Declaration:
void PR_DeleteCamera (PR_CAMERA *delcamera)
Remarks:
The PR_DeleteCamera routine will remove a camera from the list of cameras in the world.

Parameters:
delcamera

- Pointer to a camera structure in the world camera list

Return Value:
None

See Also:
PR_AddCamera

PR_DollyCamera

Function:
Moves a camera in the direction it is facing

Declaration:
void PR_DollyCamera (PR_CAMERA *setcam, PR_REAL steps)
Remarks:
The PR_DollyCamera will move a camera forward or backward in the direction it is facing. This is used for free moving cameras that do not have an entity related to them.

Parameters:
setcam

- Pointer to the camera structure

steps

- Number of units to move forward or backward

(give negative value to move backwards)

Return Value:
None

See Also:
None

PR_FindClosestCamera

Function:
Returns a pointer to the camera that is closest to a 3D point in the world

Declaration:
PR_CAMERA *PR_FindClosestCamera (PR_REAL x, PR_REAL y,

 PR_REAL z)
Remarks:
The PR_FindClosestCamera routine will return a pointer to the camera that is closest to the 3D point given. This is useful for external views, such as a car driving around a race track being viewed from TV cameras.

Parameters:
x

- X coordinate

y

- Y coordinate

z

- Z coordinate

Return Value:
Pointer to the closest camera

PR_FindDirectionVector

Function:
Finds a direction vector given a rotation value

Declaration:
void PR_FindDirectionVector (PR_POINT *direct,

PR_REAL x, PR_REAL y, PR_REAL z);
Remarks:
The PR_FindDirectionVector routine will rotate a vector by the given rotation values. For example if you set the direct vector to (0, 0, 1), you can find the forward direction vector of an entity by passing the rotation values for that entity. You can use this routine to find any direction vector if the direct vector is normalized.

Parameters:
direct

- Vector for passing and returning normalized value

x

- X rotation

y

- Y rotation

z

- Z rotation

Return Value:
None

PR_FreeCamera

Function:
Frees the space used by a camera structure

Declaration:
void PR_FreeCamera (PR_CAMERA *camera);
Remarks:
The PR_FreeCamera routine will free the memory used by a camera.

Parameters:
camera

- Pointer to the camera to free

Return Value:
None

See Also:
PR_AllocCamera

PR_GetActiveCamera

Function:
Returns a pointer to the current viewing camera

Declaration:
PR_CAMERA *PR_GetActiveCamera (void)
Remarks:
The PR_GetActiveCamera routine returns a pointer to the camera that is currently being used for viewing the scene.

Parameters:
None

Return Value:
Pointer to the active camera

See Also:
PR_GetCamera, PR_SetActiveCamera

PR_GetCamera

Function:
Returns a pointer to the camera, given its name

Declaration:
PR_CAMERA *PR_GetCamera (char *name)
Remarks:
The PR_GetCamera routine returns a pointer to a camera in the world camera list, given its name.

Parameters:
name

- Name of the camera to find

Return Value:
Pointer to the camera

See Also:
PR_GetActiveCamera, PR_AddCamera
PR_GetFirstCamera

Function:
Returns a pointer to the first camera in the world

Declaration:
PR_CAMERA *PR_GetFirstCamera (void)
Remarks:
The PR_GetFirstCamera routine will return a pointer to the first camera in the world camera list. This list usually contains cameras that have fixed positions in the world, such as TV cameras along a race track. For creating a moving camera, you’re better off to create one that is global to your application, and set the source and destination coordinates for every frame drawn.

Parameters:
None

Return Value:
Pointer to the first camera

See Also:
PR_GetCamera

PR_InitializeCamera

Function:
Initializes a camera to some standard values

Declaration:
void PR_InitializeCamera (PR_CAMERA *initcam)
Remarks:
Before using a new camera, you must call this routine to initialize it. After calling this routine, you can set up the rotation or source and target locations.

Parameters:
initcam

- Pointer to an uninitialized camera structure

Return Value:
None

See Also:
PR_AllocCamera

PR_MoveCameraSource

Function:
Move a camera's source coordinate by a specified amount

Declaration:
void PR_MoveCameraSource (PR_CAMERA *setcam,

PR_REAL x, PR_REAL y, PR_REAL z)
Remarks:
The PR_MoveCameraSource routine will move a camera’s source location relative to its current position in world space.

Parameters:
setcam

- Pointer to the camera structure

x

- Amount to move along X Axis

y

- Amount to move along Y Axis

z

- Amount to move along Z Axis

Return Value:
None

See Also:
PR_SetCameraSource, PR_MoveCameraTarget, PR_DollyCamera

PR_MoveCameraTarget

Function:
Move a camera's target coordinate by a specified amount

Declaration:
void PR_MoveCameraTarget (PR_CAMERA *setcam,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_MoveCameraTarget routine will move a camera’s target location relative to its current position in world space.

Parameters:
setcam

- Pointer to the camera structure

x

- Amount to move along X Axis

y

- Amount to move along Y Axis

z

- Amount to move along Z Axis

Return Value:
None

See Also:
PR_SetCameraTarget, PR_MoveCameraSource, PR_DollyCamera

PR_PositionCameraSource

Function:
Sets the location of a camera, given its pointer

Declaration:
void PR_PositionCameraSource (PR_CAMERA *setcam,

 PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_PositionCameraSource routine will set the source location of a camera. This is the location where the camera is actually sitting in the world.

Parameters:
setcam

- Pointer to the camera structure

x

- X world Coordinate

y

- Y world Coordinate

z

- Z world Coordinate

Return Value:
None

See Also:
PR_PositionCameraTarget

PR_PositionCameraTarget

Function:
Sets the target of a camera, given its pointer

Declaration:
void PR_PositionCameraTarget (PR_CAMERA *setcam,

 PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_PositionCameraTarget routine will set the destination location of a camera. This is the location that the camera is looking at. The destination coordinate is only used when the camera is in the CAM_AIMTARGET mode. See PR_SetCameraMode for information about camera modes.

Parameters:
setcam

- Pointer to the camera structure

x

- X world Coordinate

y

- Y world Coordinate

z

- Z world Coordinate

Return Value:
None

See Also:
PR_PositionCameraSource, PR_SetCameraMode

PR_SetActiveCamera

Function:
Sets the viewing camera

Declaration:
void PR_SetActiveCamera (PR_CAMERA *cam)
Remarks:
The PR_SetActiveCamera routine sets the current viewing camera. This should be called once per frame, before any entities are transformed. You only have to call the routine if the camera has changed in some way.

Parameters:
cam

- Pointer to the camera structure

Return Value:
None

See Also:
PR_GetActiveCamera

PR_SetCameraMode

Function:
Sets the viewing mode for the camera.

Declaration:
void PR_SetCameraMode (PR_CAMERA *cam,

PR_DWORD mode);
Remarks:
The PR_SetCameraMode routine will set the viewing mode of a camera. The mode can either be CAMFLAG_ANGLE_BASED or CAMFLAG_AIM_TARGET. The former uses the rotation values to calculate a target coordinate. The latter lets you set the target to any coordinate in the world.

Parameters:
cam

- Pointer to the camera structure

mode

- Camera viewing mode

Return Value:
None

See Also:
PR_SetCameraSource, PR_SetCameraTarget

Light Interface

Source Code Files - PRLIGHT.C

The Light Interface provides functions for controlling the lights in a world.

PR_AllocLights

Function:
Allocate space for the given number of lights.

Declaration:
void PR_AllocLights (PR_LIGHTLIST *lights,

PR_DWORD numlights)
Remarks:
The PR_AllocLights routine will allocate a PR_LIGHTLIST structure given the number of lights in it.

Parameters:
lights

- Pointer to the lightlist structure

numlights

- Number of lights to allocate for this list

Return Value:
None

See Also:
None
PR_GetAmbientLight

Function:
Returns the amount of ambient light

Declaration:
PR_REAL PR_GetAmbientLight (void)
Remarks:
The amount of ambient light ranges from 0 to 1024.

Parameters:
None

Return Value:
Amount of ambient light currently being used

See Also:
PR_SetAmbientLight
PR_GetLightColor

Function:
Get the color of a light

Declaration:
void PR_GetLightColor (PR_LIGHTLIST *lights, PR_DWORD light,

PR_REAL *r, PR_REAL *g, PR_REAL *b);

Remarks:
The PR_GetLightColor routine will return the red, green, and blue components of a light. These values are only used with 3D cards. The RGB values are in the range 0.0 to 1.0.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

r

- Pointer to the red component

g

- Pointer to the green component

b

- Pointer to the blue component

Return Value:
None

See Also:
PR_SetLightColor

PR_GetLightFalloff

Function:
Get the falloff value for a light

Declaration:
PR_REAL PR_GetLightFalloff (PR_LIGHTLIST *lights,

 PR_DWORD light);
Remarks:
The PR_GetLightFalloff routine will return the falloff value of a light.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

Return Value:
Falloff value of the light

See Also:
PR_SetLightFalloff

PR_GetLightPosition

Function:
Get the position of a light

Declaration:
void PR_GetLightPosition (PR_LIGHTLIST *lights,

PR_DWORD light,

PR_REAL *x, PR_REAL *y, PR_REAL *z)

Remarks:
The PR_GetLightPosition will return the 3D coordinate of a light within the world.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

x

- Pointer to the returned X world coordinate

y

- Pointer to the returned Y world coordinate

z

- Pointer to the returned Z world coordinate

Return Value:
None

See Also:
PR_SetLightPosition

PR_GetLightState

Function:
Returns the status of the given light

Declaration:
PR_DWORD PR_GetLightState (PR_LIGHTLIST *lights,

PR_DWORD light)
Remarks:
The PR_GetLightState routine will return TRUE if the light is on, or FALSE if the light is not.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

Return Value:
1 if the light is on

0 if the light is off

See Also:
PR_SetLightOn, PR_SetLightOff

PR_GetLightStrength

Function:
Gets the strength value for a light

Declaration:
PR_REAL PR_GetLightStrength (PR_LIGHTLIST *lights,

PR_DWORD light);
Remarks:
The PR_GetLightStrength routine will return the strength value of a light, from 0.0 to 1.0.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

Return Value:
Strength value of the light

See Also:
PR_SetLightStrength

PR_GetLightType

Function:
Returns the type of the light

Declaration:
PR_DWORD PR_GetLightType (PR_LIGHTLIST *lights,

PR_DWORD light)
Remarks:
The PR_GetLightType routine will return the type (POINT_LIGHT or DIRECTIONAL_LIGHT) of a light.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

Return Value:
Type of the light

See Also:
PR_SetLightType

PR_SetAmbientLight

Function:
Sets the amount of ambient light

Declaration:
void PR_SetAmbientLight (PR_REAL light)
Remarks:
The amount of ambient light ranges from 0 to 1024. This routine is only used for software rendering. For 3D cards, you must change the PR_AmbientRed, PR_AmbientBlue, and PR_AmbientGreen variables. These variables range from 0 to 255.

Parameters:
light
- The amount of ambient light that will be used for all subsequent objects being rendered

Return Value:
None

See Also:
PR_GetAmbientLight

PR_SetLightColor

Function:
Sets the color of a light

Declaration:
void PR_SetLightColor (PR_LIGHTLIST *lights, PR_DWORD light,

PR_REAL r, PR_REAL g, PR_REAL b);

Remarks:
The PR_SetLightColor routine will set the red, green, and blue components of a light. These values are only used with 3D cards. The RGB values range from 0 to 1.0.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

r

- Value of the red component

g

- Value of the green component

b

- Value of the blue component

Return Value:
None

See Also:
PR_GetLightColor

PR_SetLightFalloff

Function:
Set the falloff value for a light

Declaration:
void PR_SetLightFalloff (PR_LIGHTLIST *lights,

PR_DWORD light, PR_REAL falloff)

Remarks:
The PR_SetLightFalloff routine will set the falloff value for a light.

The falloff value will depend on the scale of your world.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

falloff

- New falloff value for the light

Return Value:
None

See Also:
PR_GetLightFalloff

PR_SetLightOff

Function:
Turns the specified light off

Declaration:
void PR_SetLightOff (PR_LIGHTLIST *lights, PR_DWORD light)
Remarks:
The PR_SetLightOff routine will turn off a light in the world. Only lights that are turned on will affect the objects in a scene.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

Return Value:
None

See Also:
PR_SetLightOn, PR_GetLightState
PR_SetLightOn

Function:
Turns the specified light on

Declaration:
void PR_SetLightOn (PR_LIGHTLIST *lights, PR_DWORD light)
Remarks:
Only lights that are turned on will affect the object within a scene. This routine will mark the light as being lit.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

Return Value:
None

See Also:
PR_SetLightOff, PR_GetLightState

PR_SetLightPosition

Function:
Set the position of a light

Declaration:
void PR_SetLightPosition (PR_LIGHTLIST *lights,

PR_DWORD light,

PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PR_SetLightPosition will set the position of a light within the world.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light to change within the list

x

- X world coordinate

y

- Y world coordinate

z

- Z world coordinate

Return Value:
None

See Also:
PR_GetLightPosition
PR_SetLightStrength

Function:
Set the strength value for a light

Declaration:
void PR_SetLightStrength (PR_LIGHTLIST *lights,

PR_DWORD light, PR_REAL strength)

Remarks:
The PR_SetLightStrength routine will set the strength value for a light. The strength ranges from 0.0 to 1.0.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

strength

- New strength value for the light

Return Value:
None

See Also:
PR_GetLightStrength

PR_SetLightType

Function:
Sets the type of the light (either POINT_LIGHT or DIRECTIONAL_LIGHT)

Declaration:
void PR_SetLightType (PR_LIGHTLIST *lights,

PR_DWORD light, PR_DWORD type)

Remarks:
There are two types of lights available in Power Render: Point lights and directional lights. Point lights illuminate the area directly around them based on distance. Directional lights are infinite and lighting is based on the angle between the light and each segment.

Parameters:
lights

- Pointer to the lightlist structure

light

- Index of the light within the list

type

- Type of light (DIRECTIONAL_LIGHT or POINT_LIGHT)

Return Value:
None

See Also:
PR_GetLightType

PR_TransformLights

Function:
Transforms the lights with respect to the camera and adds them to the scene

Declaration:
void PR_TransformLights (PR_LIGHTLIST *lights)

Remarks:
The PR_TransformLights routine is used to add a list of lights to the current scene. All object rendered after this call with be lit using the lights added up to that point.

Parameters:
lights

- Pointer to the lightlist structure

Return Value:
None

See Also:
None

Material Interface

Source code files- PRMAT.C

The Material Interface provides routines for creating materials, and assigning materials to objects.

PR_AddMaterial

Function:
Adds a material to the PR_ObjectMaterialList array

Declaration:
PR_DWORD PR_AddMaterial (PR_MATERIAL *mat)
Remarks:
The PR_AddMaterial routine will add a new material to the world. It will return the index number where the material was added in the PR_ObjectMaterialList array. The first material with a 0 length name will be used.

Parameters:
mat

- Pointer to the material structure

Return Value:
Index in the PR_ObjectMaterialList where the material was placed

MATERIAL_OUT_OF_SPACE if all materials are used

See Also:
PR_FindMaterial, PR_DeleteMaterial

PR_AllocMaterials

Function:
Allocates space for a number of materials

Declaration:
void PR_AllocMaterials (PR_DWORD size)
Remarks:
One material list is used for an entire application. This routine will allocate space for a given number of materials.

Parameters:
size

- Maximum number of materials used by this program

Return Value:
None

See Also:
PR_AddMaterial
PR_DeleteAllMaterials

Function:
Deletes all the materials from the PR_ObjectMaterialList array

Declaration:
void PR_DeleteAllMaterials (void)
Remarks:
The PR_DeleteAllMaterials is used to free the world’s material list. You must have previously called PR_AllocMaterials. This actually removes the entire list from memory, so no rendering should be done if the list is not allocated.

Parameters:
None

Return Value:
None

See Also:
PR_DeleteMaterial, PR_AllocMaterials

PR_DeleteMaterial

Function:
Deletes a material from the PR_ObjectMaterialList array

Declaration:
PR_DWORD PR_DeleteMaterial (char *name)
Remarks:
The PR_DeleteMaterial routine will remove a material from the world. Note that it doesn’t destroy the material information. It only sets the material name to a 0 length string so the PR_AddMaterial routine will put a new material in its place.

Parameters:
name
- name of the material to delete from the global material list

Return Value:
MATERIAL_NOT_FOUND if the material doesn’t exist

MATERIAL_DELETED if the material was deleted successfully

See Also:
PR_AddMaterial, PR_DeleteAllMaterials

PR_FindMaterial

Function:
Returns the index of the material, or MATERIAL_NOT_FOUND if the name is not in the PR_ObjectMaterialList array

Declaration:
PR_DWORD PR_FindMaterial (char *name)
Remarks:
The PR_FindMaterial routine will return the index number of a material given its name. If more than one material has the same name, the routine will return the one with the lowest index. It is advised that every material has a unique name to avoid confusion.

Parameters:
name

- name of the material to locate

Return Value:
Index of the material in the PR_ObjectMaterialList array

See Also:
PR_AddMaterial

PR_GetMaterialAlpha

Function:
Gets the alpha value of the material

Declaration:
PR_UCHAR PR_GetMaterialAlpha (PR_MATERIAL *mat)
Remarks:
The alpha value controls the translucency factor on 3D hardward. A value of 255 is opaque and a value of 0 is completely see-through.

Parameters:
mat

- Pointer to the material structure

Return Value:
Alpha value (0-255) of the material

See Also:
PR_SetMaterialAlpha
PR_GetMaterialBaseColor

Function:
Gets the base color of the material

Declaration:
PR_UCHAR PR_GetMaterialBaseColor (PR_MATERIAL *mat)
Remarks:
The base color element is used for flat and gouraud shading. It tells the first color in a range of gradients used for shading. For constant flat shading, this number is used as the color of the entire polygon.

Parameters:
mat

- Pointer to the material structure

Return Value:
Base Color (0-255) of the material

See Also:
PR_SetMaterialBaseColor

PR_GetMaterialColor

Function:
Gets the color of the material

Declaration:
void PR_GetMaterialColor (PR_MATERIAL *mat, PR_REAL *r,

PR_REAL *g, PR_REAL *b)
Remarks:
When using a 3D card, materials can have different RGB values. In software rendering, these values are not used.

Parameters:
mat

- Pointer to the material structure

r

- Pointer to the red component

g

- Pointer to the green component

b

- Pointer to the blue component

Return Value:
None

See Also:
PR_SetMaterialColor

PR_GetMaterialEnvironmentAxis

Function:
Gets the environment mapping axis flag of the material

Declaration:
PR_UCHAR PR_GetMaterialEnvironmentAxis

(PR_MATERIAL *mat)
Remarks:
The environment mapping axis can be one of:

XAXIS, YAXIS, or ZAXIS

Parameters:
mat

- Pointer to the material structure

Return Value:
Environment mapping axis being used by the material

See Also:
PR_SetMaterialEnvironmentAxis

PR_GetMaterialEnvironmentMap

Function:
Gets the environment mapping flag of the material

Declaration:
PR_UCHAR PR_GetMaterialEnvironmentMap

(PR_MATERIAL *mat)
Remarks:
The flag will be set to TRUE (1) if environment mapping is used for this material. The environment mapping axis should also be set for this material.

Parameters:
mat

- Pointer to the material structure

Return Value:
TRUE if the material is using environment mapping

See Also:
PR_SetMaterialEnvironmentMap

PR_GetMaterialMethod

Function:
Gets the rendering method of the material

Declaration:
PR_DWORD PR_GetMaterialMethod (PR_MATERIAL *mat)
Remarks:
See Appendix A for a list of all the possible rendering methods.

Parameters:
mat

- Pointer to the material structure

Return Value:
None

See Also:
PR_SetMaterialMethod

PR_GetMaterialMipMap

Function:
Gets the mip mapping material for a mip map level

Declaration:
PR_WORD PR_GetMaterialMipMap (PR_MATERIAL *mat,

PR_UCHAR level)

Remarks:
The level can range from 1 to 4, and you should use the following constants:

MIP_LEVEL1, MIP_LEVEL2, MIP_LEVEL3, MIP_LEVEL4

Parameters:
mat

- Pointer to the material structure

level

- Mip map level

Return Value:
Mip map material number

See Also:
PR_GetMaterialMipMapShift, PR_GetMaterialMipMapState, PR_SetMaterialMipMap

PR_GetMaterialMipMapShift

Function:
Gets the mip mapping shift value for a mip map level

Declaration:
PR_UCHAR PR_GetMaterialMipMapShift (PR_MATERIAL *mat,

PR_UCHAR level)

Remarks:
This returns the number of times to divide the texture coordinates by 2 when using this mip map. You can set it to 0 if the material isn’t texture mapped. The level can range from 1 to 4, and you should use the following constants:

MIP_LEVEL1, MIP_LEVEL2, MIP_LEVEL3, MIP_LEVEL4

Parameters:
mat

- Pointer to the material structure

level

- Mip map level

Return Value:
Mip map shift value

See Also:
PR_GetMaterialMipMap, PR_GetMaterialMipMapState, PR_SetMaterialMipMapShift

PR_GetMaterialMipMapState

Function:
Gets the mip mapping material flag

Declaration:
PR_UCHAR PR_GetMaterialMipMapState (PR_MATERIAL *mat)
Remarks:
You can enable or disable mip mapping for a single material by setting this flag.

Parameters:
mat

- Pointer to the material structure

Return Value:
TRUE if mip mapping is turned on for this material

See Also:
PR_GetMaterialMipMap, PR_GetMaterialMipMapShift, PR_SetMaterialMipMapState

PR_GetMaterialName

Function:
Gets the name of the material

Declaration:
void PR_GetMaterialName (PR_MATERIAL *mat, char *name)
Parameters:
mat

- Pointer to the material structure

name

- Allocated string to receive the material’s name

Return Value:
None

See Also:
PR_SetMaterialName

PR_GetMaterialShades

Function:
Gets the number of shades of the material

Declaration:
PR_DWORD PR_GetMaterialShades (PR_MATERIAL *mat)
Remarks:
This value is used for gouraud and lambert rendering methods.

Parameters:
mat

- Pointer to the material structure

Return Value:
Number of shades used by the material

See Also:
PR_SetMaterialShades
PR_GetMaterialTable

Function:
Gets the shadetable number of the material

Declaration:
PR_UCHAR PR_GetMaterialTable (PR_MATERIAL *mat)
Parameters:
mat

- Pointer to the material structure

Return Value:
Table number used by the material

See Also:
PR_SetMaterialTable

PR_GetMaterialTexture

Function:
Gets the texture number of the material

Declaration:
PR_DWORD PR_GetMaterialTexture (PR_MATERIAL *mat)
Parameters:
mat

- Pointer to the material structure

Return Value:
Texture number of the material

See Also:
PR_SetMaterialTexture

PR_GetMipMapDepth

Function:
Gets the global mip map depth level

Declaration:
PR_REAL PR_GetMipMapDepth (PR_UCHAR level)
Remarks:
The level can range from 1 to 4, and you should use the following constants:

MIP_LEVEL1, MIP_LEVEL2, MIP_LEVEL3, MIP_LEVEL4

Parameters:
level

- Mip map level

Return Value:
Z depth value for the mip map level

See Also:
PR_SetMipMapDepth
PR_GetMipMapShrink

Function:
Gets the global mip map shrink flag

Declaration:
PR_UCHAR PR_GetMipMapShrink (void)
Parameters:
None

Return Value:
TRUE if mip map texture shrinking is being used

See Also:
PR_SetMipMapShrink

PR_GetMipMapState

Function:
Gets the global mip map flag

Declaration:
PR_UCHAR PR_GetMipMapState (void)
Parameters:
None

Return Value:
TRUE if the mip map rendering is enabled

See Also:
PR_SetMipMapState

PR_ReturnMethodName

Function:
Returns the name of the rendering method as a string

Declaration:
char *PR_ReturnMethodName (PR_DWORD method)
Parameters:
method

- Rendering method number

Return Value:
A string containing the name of the rendering method

PR_SetMaterialAlpha

Function:
Sets the color of the material

Declaration:
void PR_SetMaterialColor (PR_MATERIAL *mat,

PR_UCHAR alpha)

Remarks:
The alpha value of a material is only valid when using 3D cards.

Parameters:
mat

- Pointer to the material structure

a

- Alpha component (0-255)

Return Value:
None

See Also:
PR_GetMaterialAlpha

PR_SetMaterialBaseColor

Function:
Sets the base color of the material

Declaration:
void PR_SetMaterialBaseColor (PR_MATERIAL *mat,

PR_UCHAR col)
Parameters:
mat

- Pointer to the material structure

col

- Base Color value (0-255)

Return Value:
None

See Also:
PR_GetMaterialBaseColor

PR_SetMaterialColor

Function:
Sets the color of the material

Declaration:
void PR_SetMaterialColor (PR_MATERIAL *mat,

PR_REAL r, PR_REAL g,

PR_REAL b)
Remarks:
The color of a material is only valid when using 3D cards. This color is multiplied by the precalculated light of the faces, and added to the dynamic light values.

Parameters:
mat

- Pointer to the material structure

r

- Red component of the color

g

- Green component of the color

b

- Blue component of the color

Return Value:
None

See Also:
PR_GetMaterialColor

PR_SetMaterialEnvironmentAxis

Function:
Sets the environment mapping axis flag of the material

Declaration:
void PR_SetMaterialEnvironmentAxis (PR_MATERIAL *mat,

PR_UCHAR envaxis)

Parameters:
mat

- Pointer to the material structure

envaxis
- Axis to align environment map

Values can be one of:

X_AXIS

Y_AXIS

Z_AXIS

Return Value:
None

See Also:
PR_GetMaterialEnvironmentAxis

PR_SetMaterialEnvironmentMap

Function:
Sets the environment mapping flag of the material

Declaration:
void PR_SetMaterialEnvironmentMap (PR_MATERIAL *mat,

 PR_UCHAR envmap)

Parameters:
mat

- Pointer to the material structure

envmap

- TRUE if the material is to use environment mapping

Return Value:
None

See Also:
PR_GetMaterialEnvironmentMap

PR_SetMaterialMethod

Function:
Sets the rendering method of the material

Declaration:
void PR_SetMaterialMethod (PR_MATERIAL *mat,

PR_DWORD method)
Remarks:
See Appendix A for a list of all rendering methods.

Parameters:
mat

- Pointer to the material structure

method

- Rendering method number

Return Value:
None

See Also:
PR_GetMaterialMethod

PR_SetMaterialMipMap

Function:
Sets the mip mapping material for a mip map level

Declaration:
void PR_SetMaterialMipMap (PR_MATERIAL *mat,

PR_UCHAR level, PR_WORD mip)

Parameters:
mat

- Pointer to the material structure

level

- Mip map level to set

mip

- Mip map material for the level

Return Value:
None

See Also:
PR_GetMaterialMipMap

PR_SetMaterialMipMapShift

Function:
Sets the mip mapping shift value for a mip map level

Declaration:
void PR_SetMaterialMipMapShift (PR_MATERIAL *mat,

 PR_UCHAR level, PR_UCHAR shift)

Parameters:
mat

- Pointer to the material structure

level

- Mip map level to set

shift

- Number of times to shift the textures coordinates right

Return Value:
None

See Also:
PR_GetMaterialMipMapShift

PR_SetMaterialMipMapState

Function:
Sets the mip mapping material flag

Declaration:
void PR_SetMaterialMipMapState (PR_MATERIAL *mat,

PR_UCHAR mip)
Parameters:
mat

- Pointer to the material structure

mip

- TRUE if mip mapping is to be used for this material

Return Value:
None

See Also:
PR_GetMaterialMipMapState

PR_SetMaterialName

Function:
Sets the name of the material

Declaration:
void PR_SetMaterialName (PR_MATERIAL *mat, char *name)
Parameters:
mat

- Pointer to the material structure

name

- Name to call the material

Return Value:
None

See Also:
PR_GetMaterialName

PR_SetMaterialShades

Function:
Sets the number of shades of the material

Declaration:
void PR_SetMaterialShades (PR_MATERIAL *mat,

PR_DWORD shades)
Parameters:
mat

- Pointer to the material structure

shades

- Number of shades for the material

Return Value:
None

See Also:
PR_GetMaterialShades

PR_SetMaterialTable

Function:
Sets the shadetable number of the material

Declaration:
void PR_SetMaterialTable (PR_MATERIAL *mat,

PR_UCHAR table)
Parameters:
mat

- Pointer to the material structure

table

- Table number

Return Value:
None

See Also:
PR_GetMaterialTable

PR_SetMaterialTexture

Function:
Sets the texture number of the material

Declaration:
void PR_SetMaterialTexture (PR_MATERIAL *mat,

PR_DWORD texture)
Parameters:
mat

- Pointer to the material structure

texture

- Texture number

Return Value:
None

See Also:
PR_GetMaterialTexture

PR_SetMipMapDepth

Function:
Sets the global mip map depth levels

Declaration:
void PR_SetMipMapDepth (PR_REAL depth, PR_UCHAR level)
Parameters:
depth

- Z depth of mip map level

level

- Mip map level to set

Return Value:
None

See Also:
PR_GetMipMapDepth

PR_SetMipMapShrink

Function:
Sets the global mip map shrink flag

Declaration:
void PR_SetMipMapShrink (PR_UCHAR mip)
Parameters:
mip

- TRUE if mip map texture shrinking is needed

Return Value:
None

See Also:
PR_GetMipMapShrink

PR_SetMipMapState

Function:
Sets the global mip map flag

Declaration:
void PR_SetMipMapState (PR_UCHAR mip)
Parameters:
mip

- Global mip mapping state

Return Value:
None

See Also:
PR_GetMipMapState

PR_SetObjectMaterial

Function:
Sets the material of an entire object

Declaration:
void PR_SetObjectMaterial (PR_OBJECT *obj, PR_DWORD mat)
Remarks:
The PR_SetObjectMaterial routine will set every face in an object use the material specified.

Parameters:
obj

- Pointer to the object structure

mat

- Material number

Return Value:
None

See Also:
PR_SetSegmentMaterial

PR_SetSegmentMaterial

Function:
Sets the material of an entire segment

Declaration:
void PR_SetSegmentMaterial (PR_SEGMENT *seg,

 PR_DWORD mat)
Remarks:
The PR_SetSegmentMaterial routine will set every face in a segment use the material specified.

Parameters:
seg

- Pointer to the segment structure

mat

- Material number

Return Value:
None

See Also:
PR_SetObjectMaterial

Texture Interface

Source code files - PRTXTURE.C

The Texture Interface gives commands for managing textures by the application.

PR_AddTexture

Function:
Adds a texture to the PR_WorldTextures array

Declaration:
PR_DWORD PR_AddTexture (char *filename, block image)
Remarks:
The PR_AddTexture routine will insert a previously loaded texture into the world texture list. This can be used if you don’t want to load a texture from disk. For example maybe you have want to use a previously rendered frame as a texture.

Parameters:
filename

- Filename of the texture to load

image

- Pointer to the image memory

Return Value:
Index where the texture was stored in the PR_WorldTextures array

See Also:
PR_LoadTexture

PR_AllocTextures

Function:
Allocates room for a list of textures

Declaration:
void PR_AllocTextures (PR_DWORD maxtexture)

Remarks:
Before any textures are loaded, you must reserve space for them. The PR_AllocTextures routine will allocate space for a given number of textures.

Parameters:
maxtexture

- Maximum number of textures the scene will use

Return Value:
None

See Also:
PR_DeleteAllTextures
PR_DeleteAllTextures

Function:
Deletes all the textures from the PR_WorldTextures array

Declaration:
void PR_DeleteAllTextures (void)
Remarks:
This routine will remove all textures loaded, as well as the texture array itself. You must call PR_AllocTextures again if you want to load new textures.

Parameters:
None

Return Value:
None

See Also:
PR_AllocTextures

PR_DeleteTexture

Function:
Deletes a texture from the PR_WorldTextures array

Declaration:
PR_DWORD PR_DeleteTexture (char *filename)
Remarks:
A single texture image can be removed from the world if the filename is unique. If the filename is not found in the texture list, this routine will return TEXTURE_NOT_FOUND.

Parameters:
filename

- Filename of the texture to delete

Return Value:
TEXTURE_NOT_FOUND,

TEXTURE_DELETED
See Also:
PR_AllocTextures, PR_DeleteAllTextures

PR_FindMostCommonColor

Function:
Finds the most common color in a texture

Declaration:
PR_UCHAR PR_FindMostCommonColor (PR_DWORD texnum)
Remarks:
This routine is useful for flat shading when a texture is far away. You can make the texture turn into a solid color, using the most common color of the texture image.

Parameters:
texnum

- Texture number

Return Value:
Most common color in the texture

PR_FindTexture

Function:
Returns the index of a texture given its filename

Declaration:
PR_DWORD PR_FindTexture (char *filename)
Remarks:
The PR_FindTexture routine will return the index of a texture in the world texture list, given its filename. For this to work correctly, each texture must have a unique name.

Parameters:
filename

- The filename of the texture to locate

Return Value:
TEXTURE_NOT_FOUND if the file is not in the PR_WorldTextures array,

or the image number in the array if the file has been loaded already.

PR_GetImageType

Function:
Returns the file type of an image, based on the extension
Declaration:
PR_DWORD PR_GetImageType (char *filename)
Remarks:
Images are identified by their extension. For a list of all supported image formats, see Appendix B.

Parameters:
filename

- The filename of the texture to locate

Return Value:
Image type number

PR_LoadTexture

Function:
Loads a texture image if it hasn't already been loaded

Declaration:
PR_DWORD PR_LoadTexture (char *filename)
Remarks:
This routine is used to load a texture image from disk into the world texture list in memory. See Appendix B for a list of supported image formats.

If the texture has already been loaded, it will simply return the number of the texture.

Parameters:
filename

- Filename of the texture to load

Return Value:
Texture number

See Also:
PR_AddTexture

PR_SetTextureFormat

Function:
Sets the format for textures used by 3D hardware

Declaration:
void PR_SetTextureFormat (PR_DWORD mode)
Remarks:
Textures have different uses and may need to be stored in different formats. This command gives you control over how the textures will be converted and used with 3D hardware.

TEXTURE_RGB_565 is a 16 bit color format, and uses 5 bits for red, 6 bits for green, and 5 bits for blue.

TEXTURE_RGBA_5551 uses 5 bits for each color component, and 1 bit for the alpha component. The alpha component is used for transparent textures where black pixels are not drawn. On the 3Dfx based cards, alpha blending is used to create smooth shaded sprites. If you are using the texture for a sprite or other object with holes, you should set the format to one that uses an alpha channel.

Two alternate names for these formats are TEXTURE_NORMAL and TEXTURE_XRAY.

Other 16 bit formats available are:

TEXTURE_ARGB_8332

TEXTURE_ARGB_4444

There are also 8 bit textures which use less texture memory:

TEXTURE_RGB_332

TEXTURE_P_8

When using TEXTURE_P_8, it is assumed you are using the same palette for every texture, just as if you were using software rendering. In general you will probably use this format if you are making an application that uses software rendering as well, and use the TEXTURE_XRAY mode for the few textures that need alpha blending.

Parameters:
mode

- Texture mode

Return Value:
None

See Also:
PR_LoadTexture
PR_SetTexturePath

Function:
Sets the path prefix for textures

Declaration:
void PR_SetTexturePath (char *pathname)
Remarks:
All textures loaded with PR_LoadTexture will look in the directory specified. If you do not call this routine, PR_LoadTexture will look in the current directory.

Parameters:
pathname

- Path of all the textures in the world

Return Value:
None

See Also:
PR_LoadTexture
Mip Map Interface

Source code files- PRMIPMAP

The mipmap interfaces provides routines for creating smaller versions of texture images for use with mipmapping.

PR_MipMapCreate

Function:
Creates a smaller version of an image using sampling or pixel averaging

Declaration:
block PR_MipMapCreate (block original, PR_UCHAR level,

PR_DWORD flags, color *pal)

Remarks:
This routine will make a smaller version of a texture image. Level is the number of times to divide the width and height by two. For example, a level of 1 would make a texture half the size of the original. The flags parameter tells how to derive the new image. Averaging produces better results for mipmapping.

Parameters:
original

- Pointer to the original image

level

- Number of times to divide the size by 2

flags

- MIPMAP_SAMPLE

- MIPMAP_AVERAGE
Return Value:
Pointer to the smaller version of the original image

Shade Table Interface

Source code files - PRTABLES.C

The Shade Table Interface provides routines for managing the tables used for lighting effects such as translucency and gouraud texture.

PR_AddShadeTable

Function:
Adds a table to the PR_ShadeTables array

Declaration:
PR_DWORD PR_AddShadeTable (char *filename,

PR_DWORD type, PR_DWORD shades, PR_UCHAR *table)

Remarks:
The PR_AddShadeTable routine will insert a previously loaded table into the world shade table list. This can be used if you don’t want to load a table from disk. For example you may want to create the table yourself or using the table generation routines available from the Shade Table API.

Parameters:
filename

- Filename of the table

type

- One of:

TABLE_STANDARD

TABLE_TRANSLUCENT

shades
- Number of shades used. Translucency tables use 256 shades.

table

- Pointer to the table data

Return Value:
Index of the table in the array

TABLE_OUT_OF_SPACE if all tables are used

See Also:
PR_AllocateShadeTables
PR_AllocShadeTables

Function:
Allocates room for a list of tables

Declaration:
void PR_AllocShadeTables (PR_DWORD maxtable)
Remarks:
Before any tables are loaded, you must reserve space for them. The PR_AllocShadeTables routine will allocate space for a given number of tables.

Parameters:
maxtable

- Maximum number of tables used by the scene

Return Value:
None

See Also:
PR_AddShadeTable
PR_BuildFogTable

Function:
Builds a fog shade table with the given number of shades and colors

Declaration:
PR_TABLE *PR_BuildFogTable (PR_DWORD numshades,

color *pal, PR_UCHAR r, PR_UCHAR g, PR_UCHAR b,

 PR_UCHAR r2,PR_UCHAR g2,PR_UCHAR b2)

Remarks:
A Fog table is similar to a gouraud table, however it is twice the size. The bottom half of the table ranges from total darkness to full brightness, which is hte same as the standard gouraud table. The top half of the table ranges from full brightness to full fog. In other words, it blends between two different colors, with the normal colors in the middle of the range.

Parameters:
numshades

- Number of shades in the table

pal

- Pointer to the palette being used

r,g,b

- RGB components of fog

r2,g2,b2

- RGB components of ‘darkness’

Return Value:
A pointer to the newly created table

See Also:
PR_BuildGouraudTable, PR_BuildPhongTable

PR_BuildGouraudTable

Function:
Builds a gouraud shade table with the given number of shades

Declaration:
PR_TABLE *PR_BuildGouraudTable (PR_DWORD numshades,

color *pal, PR_REAL startrange, PR_REAL endrange)

Remarks:
Gouraud texturing requires the use of a lighting table. This routine will create a color remapping table. A normal Gouraud table would have a range of 0 to 1, however you can modify this for gamma correction and over-brightening.

Parameters:
numshades

- Number of shades in the table

pal

- Pointer to the palette being used

startrange

- Percentage of white light on the first color

endrange

- Percentage of white light on the second color

Return Value:
A pointer to the newly created table

See Also:
PR_BuildPhongTable

PR_BuildPhongTable

Function:
Builds a phong table using shine and specular values

Declaration:
PR_TABLE *PR_BuildPhongTable (PR_DWORD numshades,

color *pal, PR_REAL shine, PR_REAL spec)

Remarks:
A phong lighting table is used in combination with the gouraud texture routine to simulate a Phong material. Instead of the brightness increasing linearly, it increases based on a phong illumation formula. This will give you bright highlights and make the surface look shiny.

Parameters:
numshades

- Number of shades in the table

shine

- Shininess factor

spec

- Specular factor

Return Value:
A pointer to the newly created table

See Also:
PR_BuildGouraudTable
PR_BuildTranslucentTable

Function:
Builds a translucent table using a percentage of the source and destination pixels

Declaration:
PR_TABLE *PR_BuildTranslucentTable (color *pal,

PR_REAL lightlevel1, PR_REAL lightlevel2)

Remarks:
Translucency effects can be created with a 256x256 lighting table. You can change how much foreground and background will be mixed together in the resulting pixel. Lightlevel1 and lightlevel2 are percentages and usually range from 0 to 1.

Parameters:
pal

- Pointer to the palette being used

lightlevel1

- Percentage of the foreground

lightlevel2

- Percentage of the background

Return Value:
A pointer to the newly created table

See Also:
PR_BuildGouraudTable, PR_BuildPhongTable

PR_ClosestColor

Function:
Returns the closest color given a RGB value

Declaration:
PR_UCHAR PR_ClosestColor (PR_UCHAR red, PR_UCHAR green,

PR_UCHAR blue, color *pal)

Remarks:
This routine is used by the table generation routines, but can also be used by the application to find suitable drawing colors from the current palette. For example, if you don’t know which color is white, you can use this function to find which palette index is closest to white.

Parameters:
red

- Red component

green

- Green component

blue

- Blue component

pal

- Pointer to the palette being used

Return Value:
The color index of the closest color in pal.

PR_DeleteAllShadeTables

Function:
Deletes all the tables from the PR_ShadeTables array

Declaration:
void PR_DeleteAllShadeTables (void)
Remarks:
The PR_DeleteAllShadeTables routine will remove all shade tables in the PR_ShadeTables array, and free the array itself.

Parameters:
None

Return Value:
None

See Also:
PR_AllocShadeTables

PR_DeleteShadeTable

Function:
Deletes a table from the PR_ShadeTables array

Declaration:
PR_DWORD PR_DeleteShadeTable (char *filename)
Remarks:
A single shade table can be deleted from the world with this routine. All faces that used the table should be modified or they will not render properly.

Parameters:
filename

filename of the table to delete

Return Value:
TABLE_DELETED or TABLE_NOT_FOUND
See Also:
PR_DeleteAllShadeTables
PR_FindShadeTable

Function:
Returns the index of a shade table in the PR_ShadeTables array

Declaration:
PR_DWORD PR_FindShadeTable (char *filename)

Remarks:
The PR_FindShadeTable routine will return the index of a table in the world table list, given its filename. For this to work correctly, each table must have a unique name.

Parameters:
filename

- Filename of the table to locate

Return Value:
TABLE_NOT_FOUND if the file is not in the PR_ShadeTables array

PR_LoadTable

Function:
Loads a table of any size from disk

Declaration:
PR_DWORD PR_LoadTable (char *filename)
Remarks:
The PR_LoadTable routine will load a shade table from disk into memory, and add it to the world table list. The table will not be loaded if it already exists in the world. This allows multiple objects to use the same table.

Parameters:
filename

- Filename of the table to load

Return Value:
TABLE_OUT_OF_SPACE,

TABLE_LOAD_ERROR
See Also:
PR_DeleteShadeTable
PR_SaveTable

Function:
Saves a table of any size to disk

Declaration:
PR_DWORD PR_SaveTable (char *filename, PR_TABLE *table)
Remarks:
The PR_SaveTable routine will save a previously allocate table to disk. It is generally used when your application is making a new table during development.

Parameters:
filename

- Filename of the destination table file

table

- Pointer to the table structure

Return Value:
TRUE if the table was saved

See Also:
PR_LoadTable
PR_SetTablePath

Function:
Sets the path prefix for tables

Declaration:
void PR_SetTablePath (char *pathname)
Remarks:
All tables loaded with PR_LoadTable will look in the directory specified. If you do not call this routine, PR_LoadTable will look in the current directory.

Parameters:
pathname

- Location of the table files

Return Value:
None

See Also:
PR_LoadTable

Viewport Interface

Source code files- PRVIEW

The Viewport Interface provides functions for handling the drawing surfaces associated with a rendered scene.

PR_ClearViewport

Function:
Clears the color and zbuffers associated with a viewport

Declaration:
void PR_ClearViewport (PR_VIEWPORT *viewport)
Remarks:
This will clear the area used by a viewport as opposed to the entire screen by using PRGFX_ClearScreen.

Parameters:
viewport

- Pointer to the viewport structure

Return Value:
None

See Also:
PR_SetViewport, PR_OpenViewport, PR_ResizeViewport, PR_ShowViewport

PR_CloseViewport

Function:
Frees the frame buffers associated with a viewport

Declaration:
void PR_CloseViewport (PR_VIEWPORT *viewport)
Remarks:
This will free the virtual screens used by a viewport. Make sure the active viewport is not the one you just closed if you are rendering more frames.

Parameters:
viewport

- Pointer to the viewport structure

Return Value:
None

See Also:
PR_SetViewport, PR_OpenViewport, PR_ResizeViewport, PR_ShowViewport

PR_OpenViewport

Function:
Initializes a viewport

Declaration:
void PR_OpenViewport (PR_VIEWPORT *viewport,

PR_DWORD x0, PR_DWORD y0,

PR_DWORD x1, PR_DWORD y1,

PR_DWORD flags)

Remarks:
Before any rendering is done, you must open a viewport. This tells the renderer where the output will go, the dimensions of the drawing buffer, and how it will be displayed on the screen. The flags parameter tells how to draw the viewport. It can be one of:

VIEW_PLAIN

- Copies directly

VIEW_DOUBLE
- Doubles the height of the viewport

VIEW_DIRTYRECT
- Uses a dirty rectangle, copies directly

VIEW_MOTIONBLUR
- Uses motion blur, requires more memory

If you choose motion blur, you must set the viewport.shadetable to the shade table number used for translucency.

There must be at least 1 viewport for an application that uses the rendering functions. Sometimes you will need more than one viewport for displaying views from multiple cameras. An example of this might be a racing simulation, where one view is from inside the car, and the other viewport is from a rear-view mirror.

Parameters:
viewport

- Pointer to the viewport structure

x0

- Left x coordinate of the viewport

y0

- Top y coordinate of the viewport

x1

- Right x coordinate of the viewport

y1

- Bottom y coordinate of the viewport

flags

- Display options when showing this viewport

Return Value:
None

See Also:
PR_SetViewport, PR_CloseViewport, PR_ResizeViewport, PR_ShowViewport
PR_ResizeViewport

Function:
Changes the size of a viewport

Declaration:
void PR_ResizeViewport (PR_VIEWPORT *viewport,

PR_DWORD x0, PR_DWORD y0,

PR_DWORD x1, PR_DWORD y1)

Remarks:
This is used to resize a viewport which has already been opened with PR_OpenViewport. Resizing a viewport will not change the field of view of a camera. It only changes the scale of all rendering output.

Parameters:
viewport

- Pointer to the viewport

x0

- Left x coordinate of the viewport

y0

- Top y coordinate of the viewport

x1

- Right x coordinate of the viewport

y1

- Bottom y coordinate of the viewport

Return Value:
None

See Also:
PR_SetViewport, PR_OpenViewport, PR_CloseViewport, PR_ShowViewport

PR_SetViewPort

Function:
Sets the active viewport

Declaration:
void PR_SetViewport (PR_VIEWPORT *newview)
Remarks:
This function will make all rendering functions output to the viewport given. The viewport must have been previously initialized using PR_OpenViewport. Clipping boundaries are set to the viewport’s extents.

Parameters:
newview

- Pointer to the viewport structure

Return Value:
None

See Also:
PR_OpenViewport, PR_CloseViewport, PR_ResizeViewport, PR_ShowViewport

PR_ShowViewport

Function:
Displays a viewport on the screen using special effect.

Declaration:
void PR_ShowViewport (PR_VIEWPORT *viewport,

 PR_DWORD x, PR_DWORD y)

Remarks:
This routine is currently not supported. Use the PR_Flip command instead. After each frame is rendered, you must called this function to display it on the screen. Different methods are used to show the output based on the flags used when calling PR_OpenViewport. You must pass the top left coordinate of the viewport on the screen.

Parameters:
viewport

- Pointer to the viewport structure

x

- Left x coordinate of viewport on graphics device

x

- Top y coordinate of viewport on graphics device

Return Value:
None

See Also:
PR_SetViewport, PR_OpenViewport, PR_CloseViewport, PR_ResizeViewport

Rendering Interface

Source code files - PRRENDER.C, PRSORT.C

The Rendering Interface allows you to put objects or segments through the rendering pipeline, and draw the resulting frame.

PR_AddElement

Function:
Adds a face to the rendering list if it is visible.

Declaration:
void PR_AddElement (PR_FACE *elemptr, PR_VERTEX *pointlist,

 PR_VERTEX_DATA *pointdata, PR_DWORD count)

Remarks:
The PR_AddElement routine will take a single face and attempt to render it. If using software rendering, the face is put into a list to be sorted and rendered later with PR_RenderFrame. If using 3D hardware, the face is rendered immediately and sorting is done using the zbuffering features of the card. This routine will clip the triangle as needed and may add more than one triangle to the rendering list. You must have the face, vertex, and vertex data structures filled in correctly. This is normally done within the PR_TransformSegment routine.

You may need this routine if you are traversing a BSP tree or using a different method of sorting.

Parameters:
elemptr

- Pointer to the face

pointlist

- Pointer to the first vertex

pointdata

- Pointer to the first vertex’s data structure

count

- Number of faces to add

Return Value:
None

See Also:
PR_RenderSegment

PR_DepthBiasLevel

Function:
Sets the depth bias level

Declaration:
void PR_DepthBiasLevel (PR_WORD bias)

Remarks:
This function is only useful when linking with Glide. Direct3D and OpenGL implementation do nothing. This command is used when rendering co-planar polygons, to let the rasterizer know which one is rendered last. Normally rendering coplanar polygons will result in rendering artificacts due to the lack of precision in the zbuffer. You should note that the standard rendering methods override this value so you may want to create new rendering routines to use this properly.

This can also be used in conjunction with the PR_DEPTHBUFFER_COMPARE_TO_BIAS depth buffering mode.

Parameters:
bias

- bias level (signed number)

Return Value:
None

See Also:
PR_DepthBufferMode
PR_DepthBufferFunction

Function:
Sets the depth buffer comparison function

Declaration:
void PR_DepthBufferFunction (PR_DWORD cmpfunc)

Remarks:
By default, the depth buffer compare function is PR_CMP_LEQUAL. Using this routine you can change the function to one of the following:

PR_CMP_NEVER

PR_CMP_LESS

PR_CMP_EQUAL

PR_CMP_LEQUAL

PR_CMP_GREATER

PR_CMP_NOTEQUAL

PR_CMP_GEQUAL

PR_CMP_ALWAYS

Parameters:
cmpfunc

- Comparison function number

Return Value:
None

See Also:
PR_DepthBufferMode

PR_DepthBufferMode

Function:
Enables or disables depth buffering

Declaration:
void PR_DepthBufferMode (PR_DWORD mode)
Remarks:
Certain entities may not need depth buffering, so you can turn it off and get a speed up on some 3D cards. The mode can be one of the following:

PR_DEPTHBUFFER_DISABLE

PR_DEPTHBUFFER_ENABLE

PR_DEPTHBUFFER_COMPARE_TO_BIAS

The last mode is available when linking with Glide only. It can be used to render cockpits.

Parameters:
mode

- depth buffering mode number

Return Value:
None

See Also:
PR_DepthBiasLevel, PR_DepthBufferFunction
PR_DepthMask

Function:
Enables or disables depth buffer writes

Declaration:
void PR_DepthMask (PR_DWORD state)

Remarks:
This routine can disable depth buffer writes for particular entities.

Parameters:
state

- TRUE or FALSE

Return Value:
None

See Also:
PR_DepthBufferFunction, PR_DepthBufferMode
PR_Initialize

Function:
Initializes the renderer

Declaration:
void PR_Initialize (PR_DWORd maxpoly)
Remarks:
Initializes the rendering system with some default values.

The following attributes are set:

1. Polygon lists for sorting are initialized

2. Front to back rendering is turned off

3. Depth sorting is set to the farthest z method

4. Loading palettes from textures is enabled

5. Amount of ambient light is set to 0

The maximum number of polygons per frame is only valid when using software rendering.

Parameters:
maxpoly

- Maximum number of polygons per frame

Return Value:
None

PR_RenderEntity

Function:
Adds visible faces from the entity to the rendering list

Declaration:
void PR_RenderEntity (PR_ENTITY *entity)
Remarks:
The PR_RenderEntity routine will take the entity’s transformed vertices and add the visible polygons to the scene being displayed.

Parameters:
entity

- Pointer to the entity

Return Value:
None

See Also:
PR_RenderSegment

PR_RenderFrame

Function:
Renders all faces in the rendering list to the viewport

Declaration:
void PR_RenderFrame (void)
Remarks:
The PR_RenderFrame routine will draw all of the elements from the scene onto the viewport’s image. This routine is only needed for software rendering.

Parameters:
None

Return Value:
None

See Also:
PR_RenderEntity, PR_RenderSegment

PR_RenderSegment

Function:
Adds visible faces from the segment to the rendering list

Declaration:
void PR_RenderSegment (PR_ENTITY *entity, PR_SEGMENT *seg)
Remarks:
The PR_RenderSegment routine will take the segment’s transformed vertices and add the visible polygons to the scene being displayed.

Parameters:
entity

- Pointer to the entity

seg

- Pointer to a segment within the entity

Return Value:
None

See Also:
PR_RenderEntity
PR_SetFogColor

Function:
Sets the color of fog.

Declaration:
void PR_SetFogColor (PR_DWORD col)
Remarks:
The PR_SetFogColor routine is used with 3D hardware only. This tells the card which color to use for fog effects. When using software rendering, the fog color must be black, and is determined from the shadetable.

Parameters:
col

- Packed RGBA color dword

Return Value:
None

See Also:
PR_SetFogState, PR_SetFogRange

PR_SetFogState

Function:
Turns fog on or off

Declaration:
void PR_SetFogState (PR_DWORD state)
Remarks:
The PR_SetFogState routine is sets the global state of fog effects.

Parameters:
state

- TRUE or FALSE value for fog

Return Value:
None

See Also:
PR_SetFogColor, PR_SetFogRange

PR_SetFogRange

Function:
Changes the minimum and maximum ranges for fog.

Declaration:
void PR_SetFogRange (PR_REAL near_dist, PR_REAL far_dist)
Remarks:
The fog effect uses a linear gradient between two distances. The closest distance has 0% fog while the farthest distance has 100% fog.

Parameters:
near_dist

- Z value where fogging begins

far_dist

- Z value where fogging is 100%

Return Value:
None

See Also:
PR_SetFogColor, PR_SetFogState

PR_SetPerspectiveDivisions

Function:
Sets the number of subdivisions used for perspective texture.

Declaration:
void PR_SetPerspectiveDivisions (PR_DWORD num)
Remarks:
The software rendering uses a subdivision method for perspective texture. That is, every few pixels the correct texture coordinate are calculated, and interpolate between. This saves many divisions and can be adjusted for different levels of accuracy. The parameter num can be one of the following:

TEXTURE_DIVISION_1

TEXTURE_DIVISION_2

TEXTURE_DIVISION_4

TEXTURE_DIVISION_8

TEXTURE_DIVISION_16

TEXTURE_DIVISION_32

TEXTURE_DIVISION_64

TEXTURE_DIVISION_128

TEXTURE_DIVISION_256

The default value is 16.

Parameters:
num

- Length of each perspective subdivision

Return Value:
None

PR_Shutdown

Function:
Shuts down the renderer

Declaration:
void PR_Shutdown (void)
Remarks:
This will free the memory used by the polygon lists, which were allocated using PR_Initialize.

Parameters:
None

Return Value:
None

PR_TexFilterMode

Function:
Sets the texture filtering modes

Declaration:
void PR_TexFilterMode (PR_DWORD minfilter, PR_DWORD magfilter)

Remarks:
This routine will allow you to switch between point sampled and bilinear filtered textures. If a 3D card does not support bilinear filtering under Direct3D, this function will not attempt to use it. The minfilter value is used when textures are smaller than the original size, and the magfilter value is used when textures are larger.

The two modes supported are:

PR_TEXTUREFILTER_POINT_SAMPLED

PR_TEXTUREFILTER_BILINEAR

Parameters:
minfilter

- Minification mode

Magfilter

- Magnication mode

Return Value:
None

Rendering Statistics Interface

Source code files - PRSTAT.C

The Rendering Statistics Interface provides routines for giving information about the scene being rendered.

PR_StatPixelsDrawn

Function:
Returns the number of pixels drawn by the triangle routines

Declaration:
PR_DWORD PR_StatPixelsDrawn (void)
Parameters:
None

Return Value:
Number of pixels drawn

PR_StatScansDrawn

Function:
Returns the number of scans drawn by the triangle routines

Declaration:
PR_DWORD PR_StatScansDrawn (void)
Parameters:
None

Return Value:
Number of scans drawn

PR_StatElementsDrawn

Function:
Returns the number of elements drawn by the rendering routines

Declaration:
PR_DWORD PR_StatElementsDrawn (void)
Parameters:
None

Return Value:
Number of elements drawn

Graphical User Interface

Source code files - PRGUI.C

The Graphics User Interface provides routines for making user interfaces which are similar to ones used in the Power Render utilities.

PRGUI_Button

Function:
Draws a 3D button in SVGA mode

Declaration:
void PRGUI_button (PR_DWORD x1, PR_DWORD y1,

PR_DWORD x2, PR_DWORD y2)

Remarks:
This function draws a “3D” shaded button on the screen using the coordinates given. It is useful for creating buttons for the graphical user interface.

Parameters:
x1

- left x coordinate of button

y1

- top y coordinate of button

x2

- right x coordinate of button

y2

- bottom y coordinate of button

Return Value:
None

See Also:
PRGUI_HitButton
PRGUI_ChoiceDialog

Function:
Display a dialog where the user can pick from two choices

Declaration:
PR_DWORD PRGUI_ChoiceDialog (char *line1, char *line2,

char *line3, char *opt1, char *opt2)

Remarks:
This routine displays a dialog box with two choices. The first three parameters are the lines of text that will appear in the box. The last two parameters are the text for the choices available.

Parameters:
line1

- First line of text in the dialog box

line2

- Second line of text in the dialog box

line3

- Third line of text in the dialog box

opt1

- First option’s text

opt2

- Second option’s text

Return Value:
0 if the first choice was taken,

1 if the second choice was taken.

PRGUI_DeinitTimer

Function:
Deinitializes the timer services

Declaration:
void PRGUI_DeinitTimer (void)
Remarks:
Before quitting the application, you should stop the timer interrupt, which will restore the clock to the correct time. If you forget to call this the clock will be running much faster than usual.

Parameters:
None

Return Value:
None

See Also:
PRGUI_InitTimer
PRGUI_DrawMouse

Function:
Updates the cursor image

Declaration:
void PRGUI_DrawMouse (void)
Remarks:
This routine will erase the mouse cursor from its old position and draw the cursor in the new location. It must be called within program loops and the smoothness of the cursor movement will depend on how quickly the loop executes.

Parameters:
None

Return Value:
None

See Also:
PRGUI_InitMouse, PRGUI_ShowMouse, PRGUI_HideMouse, PRGUI_LoadCursor,
PRGUI_editstring

Function:
Edits a string using arrow keys, insert, home, etc

Declaration:
void PRGUI_editstring (PR_DWORD x1, PR_DWORD y1,

PR_DWORD x2, PR_DWORD y2,

char *string, char *legal,

PR_DWORD maxlength)

Remarks:
This routine is used to edit a string contained within the rectangle (x2,y1,x2,y2), with a maximum length of maxlength. Legal is a string containing all of the valid typing keys.

Parameters:
x1

- left x coordinate of input box

y1

- top y coordinate of input box

x2

- right x coordinate of input box

y2

- bottom y coordinate of input box

string

- string to edit

legal

- string containing all the legal input characters

maxlength

- Maximum length of the string

Return Value:
None

PRGUI_Error

Function:
Returns to text mode, prints an error message and halts

Declaration:
void PRGUI_Error (char *string)
Remarks:
This can be used to quickly exit an application from a fatal error.

Parameters:
string

- Pointer to the error message string

Return Value:
None

PRGUI_FileExists

Function:
Returns to text mode, prints an error message and halts

Declaration:
PR_DWORD PRGUI_FileExists (char *filename)
Remarks:
This routine will return TRUE if the file exists in the current working directory.

Parameters:
string

- Pointer to the name of the file

Return Value:
TRUE if the file exists, FALSE otherwise

PRGUI_GoStartPath

Function:
Changes to the directory where the program started from

Declaration:
void PRGUI_GoStartPath (void)
Parameters:
None

Return Value:
None

See Also:
PRGUI_GoUserPath
PRGUI_GoUserPath

Function:
Returns to the drive and path where the user's data is

Declaration:
void PRGUI_GoUserPath (void)

Parameters:
None

Return Value:
None

See Also:
PRGUI_GoStartPath
PRGUI_HideMouse

Function:
Turns the cursor image off

Declaration:
void PRGUI_HideMouse (void)
Remarks:
When drawing directly to screen memory, you must hide the mouse if the cursor image is in the drawing region. This will turn off the cursor. Mouse coordinates will still be reported however no bitmap will be shown. After you’ve finished drawing, you can turn the mouse cursor back on using PRGUI_ShowMouse.

Parameters:
None

Return Value:
None

See Also:
PRGUI_InitMouse, PRGUI_DrawMouse, PRGUI_ShowMouse, PRGUI_LoadCursor
PRGUI_HitButton

Function:
Returns TRUE if you clicked in a region

Declaration:
PR_DWORD PRGUI_HitButton (PR_DWORD x1, PR_DWORD y1,

PR_DWORD x2, PR_DWORD y2)

Remarks:
This routine will return TRUE when the user has clicked on the region given. Typically you’ll have several regions where buttons have been drawn, and you’ll check all of them inside a loop.

Parameters:
x1

- left x coordinate of button

y1

- top y coordinate of button

x2

- right x coordinate of button

y2

- bottom y coordinate of button

Return Value:
TRUE if the user is clicking on this button.

See Also:
PRGUI_Button, PRGUI_textbutton
PRGUI_InitializeSVGA

Function:
Initializes to 640x480x256 and starts the custom mouse driver

Declaration:
void PRGUI_InitializeSVGA (void)
Remarks:
This routine will attempt to initialize the 640x480x256 mode, load the default mouse cursor, and set the default palette for GUI applications. The first 6 colors are defined as follows:

0: Black

1: Dark Grey

2: Medium Grey

3: Light Grey

4: White

5: Red

Parameters:
None

Return Value:
None

See Also:
PRGUI_ShutdownSVGA
PRGUI_InitMouse

Function:
Initializes the custom SVGA mouse handler

Declaration:
void PRGUI_InitMouse (void)
Remarks:
Usually the mouse driver draws the cursor when in graphics modes. However since every SVGA card has different ways of setting banks, it will not work in SVGA modes. The PRGUI library will use custom cursor drawing routines for displaying 256 color mouse cursors in these high resolution modes

When using 3D cards, the mouse is drawn using triangles for the fastest possible screen updates.

This routine will initialize the mouse driver and load a default cursor image from a file called “mcurs1.blk”.

Parameters:
None

Return Value:
None

See Also:
PRGUI_DrawMouse, PRGUI_ShowMouse, PRGUI_HideMouse, PRGUI_LoadCursor
PRGUI_InitPath

Function:
Remembers the path where the program was run

Declaration:
void PRGUI_InitPath (char *startpath)
Parameters:
startpath

- Path where the executable exists

Return Value:
None

See Also:
PRGUI_GoStartPath, PRGUI_GoUserPath
PRGUI_InitTimer

Function:
Initializes the timer services

Declaration:
void PRGUI_InitTimer (void)
Remarks:
A high resolution timer is used to control the speed of all GUI interactions.

The timer is automatically set to run at 70 times a second.

Parameters:
None

Return Value:
None

See Also:
PRGUI_DeinitTimer
PRGUI_LoadCursor

Function:
Loads the image of the mouse cursor (can be any size)

Declaration:
void PRGUI_LoadCursor (char *filename)
Remarks:
By default, the cursor image is an arrow. The bitmap for this image is stored in a block called mouse_cursor. You can change the bitmap representation of the cursor by freeing this block, then loading a new one with this command. The file is assumed to be in the .BLK format.

Parameters:
filename

- filename of the mouse cursor image file

Return Value:
None

See Also:
PRGUI_InitMouse, PRGUI_DrawMouse, PRGUI_ShowMouse, PRGUI_HideMouse
PRGUI_printf

Function:
Prints using a custom font in SVGA

Declaration:
void PRGUI_printf (PR_DWORD x, PR_DWORD y, char *fmt, ...)
Remarks:
This routine will display formatted text on the screen using the same format parameters as the standard printf command.

Parameters:
x

- X coordinate of text

y

- Y coordinate of text

fmt

- String for formatted output (see printf)

...

- Variables used for formatted string output

Return Value:
None

PRGUI_SetUserPath

Function:
Changes the user path to the current path

Declaration:
void PRGUI_SetUserPath (void)
Parameters:
None

Return Value:
None

See Also
PRGUI_InitPath, PRGUI_GoStartPath, PRGUI_GoUserPath
PRGUI_ShowMouse

Function:
Turns the cursor image on

Declaration:
void PRGUI_ShowMouse (void)
Remarks:
When the cursor has been turned off, this routine will draw the cursor image in the current mouse position. Future calls to PRGUI_DrawMouse will update the cursor image while the mouse cursor is visible.

Parameters:
None

Return Value:
None

See Also:
PRGUI_InitMouse, PRGUI_DrawMouse, PRGUI_HideMouse, PRGUI_LoadCursor
PRGUI_ShutdownSVGA

Function:
Deinitializes to text mode and shuts off the custom mouse interrupt

Declaration:
void PRGUI_ShutdownSVGA (void)
Remarks:
This will shut down the mouse cursor interrupt and return to text mode. It must be called if PRGUI_InitializeSVGA was called.

Parameters:
None

Return Value:
None

See Also:
PRGUI_InitializeSVGA
PRGUI_textbutton

Function:
Draws a 3D button with a string in the center

Declaration:
void PRGUI_textbutton (PR_DWORD x1, PR_DWORD y1,

PR_DWORD x2, PR_DWORD y2,

char *string)

Remarks:
This is used to draw buttons that the user can click on. You can test if a user is clicking on a region with PRGUI_HitButton.

Parameters:
x1

- left x coordinate of button

y1

- top y coordinate of button

x2

- right x coordinate of button

y2

- bottom y coordinate of button

string

- String to display inside button

Return Value:
None

See Also:
PRGUI_HitButton
PRGUI_WaitTicks

Function:
Waits for the given number of ticks to pass

Declaration:
void PRGUI_WaitTicks (PR_DWORD count)
Parameters:
count

- Number of ticks to wait

Return Value:
None

See Also:
PRGUI_WaitTicksWithBreak

PRGUI_WaitTicksWithBreak

Function:
Waits for the given number of ticks to pass, or until a key is hit

Declaration:
void PRGUI_WaitTicksWithBreak (PR_DWORD count)
Parameters:
count

- Number of ticks to wait

Return Value:
None

See Also:
PRGUI_WaitTicks

Matrix Interface

Source code files - PRMATRIX.C

The Matrix Interface provides routines for manipulating matrices for 3D transformations.

PR_GetAngle

Function:
Returns the angle between two coordinates

Declaration:
PR_REAL PR_GetAngle (PR_REAL x1, PR_REAL y1,

PR_REAL x2, PR_REAL y2)

Remarks:
This function returns the angle between two coordinates in 2D space.

Parameters:
x1

- x coordinate of first point

y1

- y coordinate of first point

x2

- x coordinate of second point

y2

- y coordinate of second point

Return Value:
The angle (in degrees) between the two points.

See Also:

PR_MatrixClear

Function:
This function fills a matrix with zero values.

Declaration:
void PR_MatrixClear (PR_MATRIX m)

Parameters:
m

- Pointer to a matrix

Return Value:
None

See Also:
PR_MatrixIdentity
PR_MatrixIdentity

Function:
Sets a matrix to the 4x4 identity matrix

Declaration:
void PR_MatrixIdentity (PR_MATRIX m)

Parameters:
m

- Pointer to a matrix

Return Value:
None

PR_MatrixMultiply

Function:
Multiplies two matrices together to form another matrix

Declaration:
void PR_MatrixMultiply (PR_MATRIX m2, PR_MATRIX m1,

PR_MATRIX m)

Parameters:
m2

- Pointer to the second matrix

m1

- Pointer to the first matrix

m

- Pointer to the resulting matrix

Return Value:
None

PR_MatrixRotate

Function:
Returns a matrix for rotation

Declaration:
void PR_MatrixRotate (PR_MATRIX m,

PR_REAL x, PR_REAL y, PR_REAL z)

Parameters:
m

- Pointer to the matrix

x

- Rotation about x axis

y

- Rotation about y axis

z

- Rotation about z axis

Return Value:
None

PR_MatrixScale

Function:
Returns a matrix for scaling

Declaration:
void PR_MatrixScale (PR_MATRIX m,

PR_REAL x, PR_REAL y, PR_REAL z)

Parameters:
m

- Pointer to the matrix

x

- X scale

y

- Y scale

z

- Z scale

Return Value:
None

PR_MatrixTranslate

Function:
Returns a matrix for translation

Declaration:
void PR_MatrixTranslate (PR_MATRIX m,

PR_REAL x, PR_REAL y, PR_REAL z

Parameters:
m

- Pointer to the matrix

x

- Translation in x axis

y

- Translation in y axis

z

- Translation in z axis

Return Value:
None

PR_MatrixTranspose

Function:
Makes a transpose of the upper 3x3 matrix given

Declaration:
void PR_MatrixTranspose (PR_MATRIX mat, PR_MATRIX m)

Remarks:
This routine is used for lighting calculations where the light is transformed into object space. It simply switches the rows and columns in the upper left 3x3 matrix of mat, and return it in m.

Parameters:
mat

- Pointer to the original matrix

m

- Pointer to the new matrix

Return Value:
None

PR_Transform

Function:
Multiplies a vector by a matrix.

Declaration:
void PR_Transform (PR_MATRIX t)

Remarks:
Before calling this routine, you must first place the vector you want to transform into the array of floats called tvector. For example,

tvector[0] = x;

tvector[1] = y;

tvector[2] = z;

After calling PR_Transform, the resulting vector is in the tvector array.

Parameters:
t

- Matrix used for transformation

Return Value:
None

Quaternion Interface

Source code files - PRQUAT.C

The Quaternion Interface provides routines for manipulating quaternions.

PR_QuaternionConjugate

Function:
Returns the conjugate of a quaternion

Declaration:
void PR_QuaternionConjugate (PR_QUATERNION *q)

Remarks:
This routine will negate the vector component of the quaternion.

Parameters:
q

- Pointer to the quaternion

Return Value:
None

PR_QuaternionFromVector

Function:
Makes a quaternion from a vector and rotation value

Declaration:
void PR_QuaternionFromVector (PR_QUATERNION *q,

PR_POINT *v, PR_REAL r)

Remarks:
This routine will turn a vector and rotation value into a quaternion. The vector is assume to be normalized, and the rotation is in radians. You can use the RADIANS macro to convert from degrees to radians.

Parameters:
q

- Pointer to the quaternion

v

- Pointer to the vector

r

- Rotation in radians

Return Value:
None

PR_QuaternionMultiply

Function:
Multiplies two quaternions

Declaration:
void PR_QuaternionMultiply (PR_QUATERNION *q,

PR_QUATERNION *a, PR_QUATERNION *b)

Remarks:
Quaternions can be combined but the order is important. A rotation around quaternion A comes before the rotation in B, and the result is placed in Q.

Parameters:
q

- Pointer to the resulting quaternion

a

- Pointer to the first quaternion

b

- Pointer to the second quaternion

Return Value:
None

PR_QuaternionSlerp

Function:
Performs spherical linear interpolation between unit quaternions

Declaration:
void PR_QuaternionSlerp (PR_QUATERNION *q, PR_QUATERNION *a, PR_QUATERNION *b, PR_REAL step, PR_DWORD spin)

Remarks:
This routine is used for animation, to calculate rotations between two quaterions. Step is a real value between 0 and 1, where 1 means quaternion b has been reached. Spin is the number of complete revolutions around the axis.

Parameters:
q

- Pointer to the resulting quaternion

a

- Pointer to the first quaternion

b

- Pointer to the second quaternion

step

- Step value between 0 and 1

spin

- Number of complete spins

Return Value:
None

PR_QuaternionToMatrix

Function:
Makes a rotation matrix from a quaternion

Declaration:
void PR_QuaternionToMatrix (PR_QUATERNION *q,

PR_MATRIX m)

Remarks:
This routine is used to convert a quaternion to a rotation matrix for use with rotating an object.

Parameters:
q

- Pointer to the quaternion

m

- Pointer to the resulting matrix

Return Value:
None

Morph Interface

Source code files - PRMORPH.C

The Morph Interface provides routines for morphing between two vertex lists.

PR_Morph

Function:
Morphs between two vertex lists

Declaration:
void PR_Morph (PR_VERTEX *vert1, PR_VERTEX *vert2,

 PR_VERTEX *vertdest, PR_DWORD numvert,

 PR_REAL t)

Remarks:
This routine will generate a list of vertices by linearly interpolating the two input vertex lists. The t value represent a percentage (0 to 1) of the first vertex list. The percentage of the second vertex list is 1-t. Vertex normals are not interpolated.

Parameters:
vert1

- First vertex list

vert2

- Second vertex list

vertdest

- List to contain the result

numvert

- Number of vertices in list

t

- A fraction from 0 to 1

Return Value:
None

PR_MorphWithNormals

Function:
Morphs between two vertex lists, with interpolated normals

Declaration:
void PR_MorphWithNormals (PR_VERTEX *vert1,

PR_VERTEX *vert2, PR_VERTEX *vertdest, PR_DWORD numvert, PR_REAL t)

Remarks:
This routine will generate a list of vertices by linearly interpolating the two input vertex lists. The t value represent a percentage (0 to 1) of the first vertex list. The percentage of the second vertex list is 1-t. Vertex normals are interpolated, which makes this routine suitable for shaded rendering methods.

Parameters:
vert1

- First vertex list

vert2

- Second vertex list

vertdest

- List to contain the result

numvert

- Number of vertices in list

t

- A fraction from 0 to 1

Return Value:
None

Terrain Interface

Source code files - TERRAIN.C

The Terrain Interface provides routines for rendering 3D heightfields using a polygonal mesh. It also contains routines for detecting collisions between objects and the terrain, file loading, and altering the heightfield.

PR_AllocateTerrain

Function:
Creates a terrain structure

Declaration:
PR_TERRAIN *PR_AllocateTerrain (PR_DWORD radius,

PR_DWORD flags, PR_DWORD world_scale,

PR_DWORD height_scale,

PR_DWORD base_terrain_material);

Remarks:
The first step in creating a terrain is to allocate a structure that defines the basic properties of the land. These properties are the radius, x/z scale, y scale, base material, and some flags.

The radius is the number of tiles that will be visible on either side of the camera. A typical value would be somewhere between 10 and 20.

The flags parameter controls how many levels the heightfield will use, and if a shading bitmap is required.

The number of levels can be one of the following:

TERRAIN_PLAIN

TERRAIN_2LEVEL

TERRAIN_3LEVEL

If you want to use shading, you can or one of the above flags with TERRAIN_SHADING

The world scale parameter tells how large each tile will be, in 3D world coordinates. Each tile is constructed in the x/z plane. The height scale parameter tells how much the height value is multiplied. The heightfield is a byte array and each pixel has a value from 0 to 255. Each value from this bitmap is multiplied by the height scale.

The base terrain material tells which material is the first one used by the tiles. The terrain has a word array for tiles, which allows tile numbers between 0 and 65535. The base material is added to these values, in case you have materials stored in the first few positions of the material array.

Parameters:
radius

- Number of tiles visible from camera

flags

- Terrain flags

world_scale

- Scale in x/z direction

height_scale

- Scale in y direction

base_terrain_material
- First material for terrain tiles

Return Value:
Pointer to the initialized terrain structure

PR_GetTerrainByte

Function:
Reads a byte from the heightfield data (height or shade values)

Declaration:
PR_UCHAR PR_GetTerrainByte (PR_TERRAIN *terrain,

 PR_DWORD x, PR_DWORD y, block pic)

Remarks:
This is used to read a raw byte from the height or shade bitmaps from a terrain.

Parameters:
terrain

- Pointer to the terrain

x

- X coordinate on bitmap

y

- Y coordinate on bitmap

pic

- Pointer to the bitmap

Return Value:
The byte value from the bitmap

PR_GetTerrainWord

Function:
Reads a word from the color bitmap

Declaration:
PR_UWORD PR_GetTerrainWord (PR_TERRAIN *terrain,

 PR_DWORD x, PR_DWORD y, wgtmap colorpic)

Remarks:
This is used to read a raw word from the color (tile number) bitmap from a terrain.

Parameters:
terrain

- Pointer to the terrain

x

- X coordinate on bitmap

y

- Y coordinate on bitmap

colorpic

- Pointer to the tiled map (which is a wgtmap)

Return Value:
The word value from the bitmap

PR_GetTerrainHeight

Function:
Returns the height of the terrain at the given world coordinate

Declaration:
PR_REAL PR_GetTerrainHeight (PR_TERRAIN *terrain,

PR_REAL x, PR_REAL y, block heightpic, wgtmap colorpic)

Remarks:
This routine is used to detect collisions between a point an the terrain. Given a (x,y) location on the heightfield, it will return the height in world coordinates. The height is determined by the height scale, as well as the tile at that location.

When using multiple levels, you can have some tiles that are hidden (usually tile 0) and the height returned should reflect this. This routine handles the complexities of multiple levels for you.

Since the terrain is along the x/z plane, you should use (x,z) world coordinates as parameters for (x,y) on the bitmap.

Parameters:
terrain

- Pointer to the terrain

x

- X position on the bitmap (X world coordinate)

y

- T position on the bitmap (Z world coordinate)

heightpic

- Pointer to the level’s height bitmap

colorpic

- Pointer to the level’s tile bitmap

Return Value:
None

PR_LoadTerrain

Function:
Loads the data for a heightfield

Declaration:
void PR_LoadTerrain (PR_TERRAIN *terrain, PR_DWORD level,

char *heightname, char *colorname, char *shadename,

PR_DWORD shades)

Remarks:
This command will load in the heightfield data for a certain level. If you leave the colorname or shadename as NULL, it will allocate the memory but will not initialize it. You must have a valid filename for heightname, since it obtains the width and height of the world from it.

The height and shade images can be any format from Appendix B except for 3DF files. The color image must be a wgtmap created with the WGT Map Editor. A utility is include that converts an 8 bit image into a wgtmap file, however editing with the WGT Map Editor will allow you to use more than 256 unique tiles.

The shade parameter is used for 3D hardware. This tells the maximum shade value used in the shade bitmap. Usually this matches the number of shades you are using in your shade table for software rendering.

Parameters:
terrain

- Pointer to the terrain

level

- Level number (1, 2, or 3)

heightname

- Filename of heightfield bitmap

colorname

- Filename of tile map

shadename

- Filename of shade bitmap

shades

- Maximum shade value

Return Value:
None

PR_TransformTerrain

Function:
Transforms and renders a terrain

Declaration:
void PR_TransformTerrain (PR_TERRAIN *terrain)

Remarks:
This command will transform and render the terrain. All levels associated with the terrain are rendered.

Parameters:
terrain

- Pointer to the terrain

Return Value:
None

PR_UpdateTerrain

Function:
Updates the position of the terrain

Declaration:
void PR_UpdateTerrain (PR_TERRAIN *terrain)

Remarks:
Each time the camera moves or the terrain is modified, you must call this routine. It should be called after you move the camera, and before PR_TransformTerrain. This routine will generate the 3D mesh required to display the terrain at the active camera position.

Parameters:
terrain

- Pointer to the terrain

Return Value:
None

PR_TerrainWaveFunction

Function:
Controls tile animation

Declaration:
void PR_TerrainWaveFunction (PR_WORD *col, PR_WORD *hgt, PR_WORD *shd, PR_DWORD x, PR_DWORD y)

Remarks:
This command is called for every vertex read off the heightfield. It is a required callback function when linking the terrain library. You can animate the tile number, and change the height or shading values for a single vertex. Power Render has a global flag called use_terrain_waves. If this is set to TRUE, this function will be called for every vertex.

Parameters:
col

- Pointer to the current tile number

hgt

- Pointer to the current height

shd

- Pointer to the current shade value

x

- X coordinate of point

y

- Y coordinate of point

Return Value:
None

PR_TerrainModify

Function:
Tells the rendering engine that the landscape has changed

Declaration:
void PR_TerrainModify (PR_TERRAIN *terrain)

Remarks:
Any time you change the terrain bitmap data, you must call this routine to make sure the change is shown on the next frame of animation. Usually the PR_UpdateTerrain routine only reads new height information when you have crossed over a tile boundary. This routine forces PR_UpdateTerrain to read the heightfield data on the next frame even if the camera hasn’t moved.

Parameters:
terrain

- Pointer to the terrain structure

Return Value:
None

Sound Interface

Source code files – PRSOUND.C

The Sound Interface provides routines for playing digital music and sound effects. Sounds can be attached to a 3D entity with panning and volume controlled by the position of the entity relative to the camera. Doppler shift effects can be used with looping samples.

PRSND_AddSound

Function:
Adds a sound to the PRSND_Sounds array

Declaration:
PR_DWORD PRSND_AddSound (char *filename,

LPAUDIOWAVE data)

Remarks:
The PRSND_AddSound routine will add a previously loaded wave file to the global sound array. It is used internally by the PRSND_LoadSound routine.

Parameters:
filename – Filename identifier of the sound

data – Pointer to the WAV data

Return Value:
Sound number in the global sound array

See Also:
PRSND_DeleteSound, PRSND_LoadSound

PRSND_Alloc3DSound

Function:
Allocates space for a 3D sound

Declaration:
PR_3DSOUND *PRSND_Alloc3DSound (void)

Remarks:
The PRSND_Alloc3DSound routine will allocate space for a 3D sound structure and return the pointer. To deallocate the structure, use the free command.

Parameters:
None

Return Value:
Pointer to the allocated structure

PRSND_AllocSounds

Function:
Allocates room for a list of sounds

Declaration:
void PRSND_AllocSounds (PR_DWORD maxsound)

Remarks:
The PRSND_AllocSounds routine will allocate space for a specified number of sound effects.

Parameters:
maxsound – Number of sounds to allocate space for

Return Value:
None

See Also:
PRSND_DeleteAllSounds

PRSND_CloseAudio

Function:
Closes the audio system

Declaration:
void PRSND_CloseAudio (void)

Remarks:
The PRSND_CloseAudio routine will shut down the audio system after it has been initialized.

Parameters:
None

Return Value:
None

See Also:
PRSND_OpenAudio

PRSND_CloseVoices

Function:
Removes all of the voices

Declaration:
void PRSND_CloseVoices (void)

Remarks:
The PRSND_CloseVoices routine will stop and remove all of the voices initialized by PRSND_InitializeVoices.
Parameters:
None

Return Value:
None

See Also:
PRSND_InitializeVoices

PRSND_DeleteAllSounds

Function:
Deletes al the sounds from the PRSND_Sounds array

Declaration:
void PRSND_DeleteAllSounds (void)

Remarks:
The PRSND_DeleteAllSounds routine will free the WAV data used by all of the sounds currently loaded.

Parameters:
None

Return Value:
None

See Also:
PRSND_AllocSounds, PRSND_LoadSound

PRSND_DeleteSound

Function:
Deletes a sound from the PRSND_Sounds array

Declaration:
PR_DWORD PRSND_DeleteSound (char *filename)

Remarks:
The PRSND_DeleteSound routine will free a single sound effect.

Parameters:
filename – Filename identifier of the sound

Return Value:
If the filename was not loaded, it will return SOUND_NOT_FOUND, otherwise it will return SOUND_DELETED
PRSND_FindDevices

Function:
Adds all of the available devices to the PRSND_DeviceList array

Declaration:
void PRSND_FindDevices (void)

Remarks:
The PRSND_FindDevices routine will add the available sound cards to a list. You can then choose a card from the list for a manual card setup. It list all cards supported by the audio system, not just the ones that are currently detected.

Parameters:
None

Return Value:
None

PRSND_FindFreeVoice

Function:
Finds the next available voice

Declaration:
PR_DWORD PRSND_FindFreeVoice (void)

Remarks:
The PRSND_FindFreeVoice routine will return the first voice number which isn’t active.

Parameters:
None

Return Value:
Voice number

PRSND_FindSound

Function:
Finds the sound number given its filename

Declaration:
PR_DWORD PRSND_FindSound (char *filename)

Remarks:
The PRSND_FindSound routine will return the sound number in the PRSND_Sounds array if it has been loaded previously.

Parameters:
filename – Filename identifier of the sound

data – Pointer to the WAV data

Return Value:
SOUND_NOT_FOUND if the file is not in the PRSND_Sounds array,

otherwise the sound number

PRSND_FreeSong

Function:
Removes a song from memory

Declaration:
void PRSND_FreeSong (void)

Remarks:
The PRSND_FreeSong routine will deallocate the memory used by a song. There can only be one song loaded at a time.

Parameters:
None

Return Value:
None

PRSND_Get3DSoundStatus

Function:
Returns the status of a 3D sound

Declaration:
PR_DWORD PRSND_Get3DSoundStatus (

PR_3DSOUND *soundptr)

Remarks:
The PRSND_Get3DSoundStatus routine will return 1 if the sound is playing, and 0 otherwise.

Parameters:
filename – Filename identifier of the sound

data – Pointer to the WAV data

Return Value:
1 if the sound is playing, 0 otherwise

PRSND_GetLength

Function:
Returns the length of a sample

Declaration:
PR_DWORD PRSND_GetLength (PR_DWORD sound)

Remarks:
The PRSND_GetLength routine will return the length of a WAV sample.

Parameters:
sound – Sound number

Return Value:
Length of the sample

PRSND_Initialize

Function:
Initializes the audio system

Declaration:
void PRSND_Initialize (void)

Remarks:
The PRSND_Initialize routine will initialize the audio system. It should be called before any other sound routine.

Parameters:
None

Return Value:
None

PRSND_InitializeVoices

Function:
Initializes the voices used for sound effects

Declaration:
void PRSND_InitializeVoices (PR_DWORD maxvoice)

Remarks:
The PRSND_InitializeVoices routine will set how many voices are available for sound effects. The number of voices is added to those required to play the current song loaded. The maximum number of voices for both sound and music is 32.

Parameters:
maxvoice - Number of voices available for effects

Return Value:
None

PRSND_LoadSong

Function:
Loads a song from disk

Declaration:
void PRSND_LoadSong (char *filename)

Remarks:
The PRSND_LoadSong routine will load a song from disk. Only one song can be loaded at a time. Supported file formats are MOD, S3M, and XM.

Parameters:
filename – Filename of the song

Return Value:
None

PRSND_LoadSound

Function:
Loads a sound from disk

Declaration:
PR_DWORD PRSND_LoadSound (char *filename)

Remarks:
The PRSND_LoadSound routine will load a WAV file from disk. There are many types of WAV formats, and only the standard Windows format is supported. To make sure the WAV will load with the audio system, save it using the Windows Sound Recorder first.

Parameters:
filename – Filename of the sound

Return Value:
SOUND_OUT_OF_SPACE, SOUND_LOAD_ERROR, or the sound number

PRSND_OpenAudio

Function:
Opens an audio device

Declaration:
void PRSND_OpenAudio (PR_DWORD device, PR_DWORD format,

 PR_DWORD rate)

Remarks:
The PRSND_OpenAudio routine will initialize a specific audio device given its number, format, and mixing rate.

Parameters:
device – Device number from the PRSND_DeviceList array, or

AUDIO_DEVICE_MAPPER which will attempt to autodetect the sound card

format – The following flags can be OR’ed together:

AUDIO_FORMAT_8BITS

AUDIO_FORMAT_16BITS

AUDIO_FORMAT_MONO

AUDIO_FORMAT_STEREO

AUDIO_FORMAT_FILTER

rate – Common mixing rates are 44100, 22050.

Return Value:
None

PRSND_Play3DSound

Function:
Sets a 3D sound to start playing

Declaration:
void PRSND_Play3DSound (PR_3DSOUND *soundptr,

PR_DWORD num)

Remarks:
The PRSND_Play3DSound routine will mark a sound to start playing. The next time PRSND_UpdateVoices is called, it will play the sound if any free voices are available.

Parameters:
soundptr – Pointer to the 3D sound

num – Sound number to play

Return Value:
None

PRSND_PlaySong

Function:
Starts playing a song

Declaration:
void PRSND_PlaySong (void)

Remarks:
The PRSND_PlaySong routine will start playing the song that is currently loaded.

Parameters:
None

Return Value:
None

PRSND_SetLoopEnd

Function:
Sets the end position of a sound loop

Declaration:
void PRSND_SetLoopEnd (PR_DWORD sound, PR_DWORD pos)

Remarks:
The PRSND_SetLoopEnd routine will set the end position of a loop within a sample.

Parameters:
sound – Sound number

pos – Ending position of the loop

Return Value:
None

PRSND_SetLoopMode

Function:
Sets the looping mode of a sample

Declaration:
void PRSND_SetLoopMode (PR_DWORD sound,

PR_DWORD mode)

Remarks:
The PRSND_SetLoopMode routine will enable or disable looping for a single WAV sample.

Parameters:
sound – sound number

mode – 1 if looping, 0 otherwise

Return Value:
None

PRSND_SetLoopStart

Function:
Sets the start position of a sound loop

Declaration:
void PRSND_SetLoopStart (PR_DWORD sound, PR_DWORD pos)

Remarks:
The PRSND_SetLoopStart routine will set the start position of a loop within a sample.

Parameters:
sound – Sound number

pos – Starting position of the loop

Return Value:
None

PRSND_SetOrigin

Function:
Sets the position of the listener

Declaration:
void PRSND_SetOrigin (PR_REAL x, PR_REAL y, PR_REAL z)

Remarks:
The PRSND_SetOrigin routine should be called each time the camera location is changed. All 3D sounds are based on this position to control the panning and volume.

Parameters:
x, y, z – 3D coordinate of the listener’s position in the world

Return Value:
None

PRSND_SetSongVolume

Function:
Sets the volume of the song

Declaration:
void PRSND_SetSongVolume (PR_DWORD volume)

Remarks:
The PRSND_SetSongVolume routine will set the volume level for the song.

The volume ranges between 0 and 64 (full volume).

Parameters:
volume – Volume level

Return Value:
None

PRSND_SetSoundPath

Function:
Sets the path prefix for sounds

Declaration:
void PRSND_SetSoundPath (char *pathname)

Remarks:
The PRSND_SetSoundPath routine controls where samples will be loaded from. If you place all of you sound effects in a subdirectory you can use this routine to load them from there.

Parameters:
pathname – Path where sounds are loaded from

Return Value:
None

PRSND_StopSong

Function:
Stops a song while playing

Declaration:
void PRSND_StopSong (void)

Remarks:
The PRSND_StopSong routine will stop the song if it is currently playing.

Parameters:
None

Return Value:
None

PRSND_Set3DSoundCoordinate

Function:
Sets the coordinate of a 3D sound

Declaration:
void PRSND_Set3DSoundCoordinate (PR_3DSOUND *soundptr,

PR_REAL x, PR_REAL y, PR_REAL z, PR_ENTITY *ent)

Remarks:
The PRSND_Set3DSoundCoordinate routine will either set the position of a sound, or attach it to an entity if the entity pointer is not null. The 3D coordinate parameters are not used if the entity pointer is not NULL. Doppler shift effects are only possible if you attach a sound to an entity.

Parameters:
soundptr – Pointer to the 3D sound

x,y,z – Position of sound in the world

ent – Pointer to an entity

Return Value:
None

PRSND_Set3DSoundPanning

Function:
Sets the panning value for a 3D sound

Declaration:
void PRSND_Set3DSoundPanning (PR_3DSOUND *soundptr,

PR_DWORD pan)

Remarks:
The PRSND_Set3DSoundPanning routine will set the panning value (between 0 and 256) for a 3D sound. If 3D panning is enabled then this value will be ignored, since the panning is computed each time the PRSND_UpdateVoices routine is called.

Parameters:
soundptr – Pointer to the 3D sound

pan – Panning value

Return Value:
None

PRSND_Set3DSoundPanningFactor

Function:
Sets the panning factor for a 3D sound

Declaration:
void PRSND_Set3DSoundPanningFactor (PR_3DSOUND *soundptr,

 PR_REAL factor)

Remarks:
The PRSND_Set3DSoundPanningFactor routine will set the panning factor for a 3D sound. The factor represents the distance away from the listener when the panning is completely left or right. For example, if the factor was 100, the panning would be completely left if the sound was less than -100 in the x axis, and completely right if the sound was greater than 100 in the x axis. Anything in between would have a panning value in the range 0 to 256.

Parameters:
soundptr – Pointer to the 3D sound

factor – Panning factor

Return Value:
None

PRSND_Set3DSoundPanningMode

Function:
Sets the panning mode for a 3D sound

Declaration:
void PRSND_Set3DSoundPanningMode (PR_3DSOUND *soundptr,

PR_DWORD mode)

Remarks:
The PRSND_Set3DSoundPanningMode routine will enable or disable 3D panning.

Parameters:
soundptr – Pointer to the 3D sound

Mode – Either SOUND_NORMAL_PANNING or SOUND_3D_PANNING
Return Value:
None

PRSND_Set3DSoundShiftFactor

Function:
Sets the Doppler shift factor for a 3D sound

Declaration:
void PRSND_Set3DSoundShiftFactor (PR_3DSOUND *soundptr,

PR_REAL factor)

Remarks:
The PRSND_Set3DSoundShiftFactor routine will set the doppler shift factor. This is typically a small fraction. It controls the maximum pitch bend a sample can have.

Parameters:
soundptr – Pointer to the 3D sound

factor – Pitch bend factor

Return Value:
None

PRSND_Set3DSoundShiftMode

Function:
Sets the Doppler shift mode for a 3D sound

Declaration:
void PRSND_Set3DSoundShiftMode (PR_3DSOUND *soundptr,

PR_DWORD mode)

Remarks:
The PRSND_Set3DSoundShiftMode routine will enable or disable Doppler shift.

Parameters:
soundptr – Pointer to the 3D sound

Mode – Either SOUND_DOPPLER_OFF or SOUND_DOPPLER_ON
Return Value:
None

PRSND_Set3DSoundShiftSlide

Function:
Sets the Doppler shift slide value for a 3D sound

Declaration:
void PRSND_Set3DSoundShiftSlide (PR_3DSOUND *soundptr,

PR_DWORD slide)

Remarks:
The PRSND_Set3DSoundShiftSlide routine will set the slide factor for Doppler shift effects. The pitch of a sample will slide towards the value calculated with the shift factor. This gives the sound a continuous pitch bend between different velocities.

Parameters:
soundptr – Pointer to the 3D sound

slide – Pitch slide factor

Return Value:
None

PRSND_Set3DSoundVolume

Function:
Sets the volume of a 3D sound

Declaration:
void PRSND_Set3DSoundVolume (PR_3DSOUND *soundptr,

PR_DWORD vol)

Remarks:
The PRSND_Set3DSoundVolume routine will set the volume for a 3D sound. If 3D volume is enabled then this value is ignored.

Parameters:
soundptr – Pointer to the 3D sound

vol – Volume level, from 0 to 63

Return Value:
None

PRSND_Set3DSoundVolumeFactor

Function:
Sets the volume factor of a 3D sound

Declaration:
void PRSND_Set3DSoundVolumeFactor (PR_3DSOUND *soundptr,

PR_REAL factor)

Remarks:
The PRSND_Set3DSoundVolumeFactor routine will set the volume factor of a 3D sound. The factor represents the distance where a sound can no longer be heard. Once a sound is out of this range, it is removed from the list of active sounds.

Parameters:
soundptr – Pointer to the 3D sound

factor – Distance where a sound can no longer be heard

Return Value:
None

PRSND_Set3DSoundVolumeMode

Function:
Sets the volume mode of a 3D sound

Declaration:
void PRSND_Set3DSoundVolumeMode (PR_3DSOUND *soundptr,

PR_DWORD mode)

Remarks:
The PRSND_Set3DSoundVolumeMode routine will enable or disable 3D volume for a 3D sound.

Parameters:
soundptr – Pointer to the 3D sound

Mode – Either SOUND_NORMAL_VOLUME or SOUND_3D_VOLUME

Return Value:
None

PRSND_Update3DSound

Function:
Updates a 3D sound

Declaration:
void PRSND_Update3DSound (PR_3DSOUND *sound)

Remarks:
The PRSND_Update3DSound routine is used to start or stop sound effects. After setting up the 3D sound structure, you can call this routine to manage the list of active sound effects. This command will determine if a looping sample should be turned on when an entity is within range. It is also used to add new samples to the active sound list.

Parameters:
sound – Pointer to the 3D sound

Return Value:
None

PRSND_UpdateVoices

Function:
Updates all of the active 3D voices

Declaration:
void PRSND_UpdateVoices (void)

Remarks:
The PRSND_UpdateVoices routine is the main routine which calculates 3D panning, volume, Doppler shift, adds news sounds, and deletes old ones. It should be called every frame in the main loop.

Parameters:
None

Return Value:
None

Particle Interface

Source code files – PRPART.C

The Particle Interface provides routines for managing particles effects such as smoke, rain, or explosions.

PR_AllocParticles

Function:
Allocates space for the particle templates and list

Declaration:
void PR_AllocParticles (PR_DWORD numparticles, PR_DWORD numtypes)
Remarks:
This will allocate space for all of the particle templates and active particles. This must be called before the particle templates are set up.

Parameters:
numparticles – Maximum possible number of particles active at once

numtypes – Number of particle templates

Return Value:
None

PR_AllocEmitters

Function:
Allocates space for the emitter templates and list

Declaration:
void PR_AllocEmitters (PR_DWORD numemitters, PR_DWORD numtypes)
Remarks:
This will allocate space for all of the emitter templates and active emitters. This must be called before the emitter templates are set up.

Parameters:
numemitters – Maximum possible number of emitters active at once

numtypes – Number of emitter templates

Return Value:
None

PR_CreateEmitter

Function:
Adds a new emitter to the scene

Declaration:
void PR_CreateEmitter (PR_DWORD type, PR_POINT *location,

PR_POINT *direction)
Remarks:
A new emitter with the given location and velocity is added to the emitter list, if an available index is found.

Parameters:
type – Template number of the emitter to create

location – 3D location of the emitter

direction – Velocity vector of the emitter

Return Value:
None

PR_CreateParticle

Function:
Adds a new particle to the scene

Declaration:
void PR_CreateParticle (PR_PARTICLE *ParticleType, PR_POINT *location,

PR_POINT *velocity)
Remarks:
A new particle with the given location and velocity is added to the particle list, if an available index is found.

Parameters:
ParticleType – Pointer to the particle template to create

location – 3D location of the particle

velocity – Velocity vector of the particle

Return Value:
None

PR_InitializeEmitterType

Function:
Initializes an emitter template to some default values

Declaration:
void PR_InitializeEmitterType (PR_DWORD emitnum)
Remarks:
This routine sets the attributes of an emitter template to some default values.

All emitter options are turned off, and it defaults to creating 1 particle each frame.

Parameters:
emitnum – Emitter template number to initialize

Return Value:
None

PR_InitializeParticleType

Function:
Initializes a particle template to some default values

Declaration:
void PR_InitializeParticleType (PR_DWORD partnum)
Remarks:
This routine sets the attributes of a particle template to some default values.

All particle options are turned off, and the scale is set to 1.0.

Parameters:
partnum – Particle template number to initialize

Return Value:
None

PR_SetEmitterBounceParameters

Function:
Sets the bounce parameters for an emitter

Declaration:
void PR_SetEmitterBounceParameters (PR_DWORD emitnum, PR_POINT *factor,

PR_DWORD maxbounce)
Remarks:
This routine sets the EMITTER_BOUNCE_LIMIT flag and the bounce parameters of an emitter.

These attributes are not handled by the particle system. You must use the data stored in the structures within a collision callback routine. For example:

If (collision_found)

 {

 /* Change velocity/direction here */

 …

 /* Multiply by a dampening factor */

 emit->Velocity.x *= emit->BounceFactor.x;

 emit->Velocity.y *= emit->BounceFactor.y;

 emit->Velocity.z *= emit->BounceFactor.z;

 if (emit->Flags & EMITTER_BOUNCE_LIMIT)

 {

 emit->BounceCount++;

 /* Turn off the emitter if it has bounced enough */

 if (emit->BounceCount >= emit->MaxBounce)

 emit->Active = 0;

 }

 }

Parameters:
emitnum – Emitter template number

factor – Dampening factor (suggested range 0.0-1.0)

maxbounce – Maximum number of times to bounce

Return Value:
None

PR_SetEmitterCollisionAction

Function:
Sets the collision action flags for an emitter

Declaration:
void PR_SetEmitterCollisionAction (PR_DWORD emitnum,

PR_DWORD action)

Remarks:
This adds the action flag to the emitter template’s flags. Three actions are suggested:

EMITTER_COLLIDE_BOUNCES

EMITTER_COLLIDE_STOPS (disappears if a collision is detected)

EMITTER_COLLIDE_SPAWNS (disappears and spawns a new emitter)

The particle system does not use these flags. It is up to the collision callback routine to check for these flags and perform the appropriate action. You can make your own action flags with an unused bit in the flags field. See the prpart.h header file for the list of used flag values.

Parameters:
emitnum – Emitter template number

action – Action flag to set

Return Value:
None

PR_SetEmitterCollisionProc

Function:
Sets the collision callback for an emitter

Declaration:
void PR_SetEmitterCollisionProc (PR_DWORD emitnum,

void (*collideproc)(void *emit))
Remarks:
This sets the user defined collision callback routine for an emitter template.

The callback routine is passed a pointer to the current emitter so it can determine if a collision occurred, based on the current and previous location of the emitter.

Parameters:
emitnum – Emitter template number

collideproc – Pointer to the callback routine

Return Value:
None

PR_SetEmitterDelay

Function:
Sets the number of frames between particle emissions for an emitter

Declaration:
void PR_SetEmitterDelay (PR_DWORD emitnum, PR_WORD delay)
Remarks:
Normally an emitter will create particles every frame. This command allows you to make an emitter that creates particles at certain intervals.

Parameters:
emitnum – Emitter template number

delay – Number of frames between a particle emission

Return Value:
None

PR_SetEmitterGravity

Function:
Sets the amount of gravity affecting an emitter

Declaration:
void PR_SetEmitterGravity (PR_DWORD emitnum, PR_REAL gravity)
Remarks:
Sets a gravity amount for an emitter, which is added to the velocity each frame.

Parameters:
emitnum – Emitter template number

gravity – Amount to add to velocity each frame

Return Value:
None

PR_SetEmitterMovement

Function:
Enables or disables emitter movement

Declaration:
void PR_SetEmitterMovement (PR_DWORD emitnum, PR_DWORD action)
Remarks:
The action parameter can either be TRUE or FALSE. If TRUE, the emitter will move. This applies to velocity calculations only.

Parameters:
emitnum – Emitter template number

action – TRUE if the emitter moves

Return Value:
None

PR_SetEmitterNumParticles

Function:
Sets the number of particles an emitter creates during a frame

Declaration:
void PR_SetEmitterNumParticles (PR_DWORD emitnum,

PR_WORD number)
Remarks:
Normally an emitter will create one particle during an update. Calling this routine enables an emitter to create multiple particles. This is useful for explosions, where the emitter only lasts for one frame but emits a large number of particles.

Parameters:
emitnum – Emitter template number

number – Number of particles to emit each frame

Return Value:
None

PR_SetEmitterParticleType

Function:
Sets the particle type for an emitter

Declaration:
void PR_SetEmitterParticleType (PR_DWORD emitnum,

PR_DWORD particletype)
Remarks:
This routine will set the particle template associated with an emitter. All particles created by this emitter will use the particle template given.

Parameters:
emitnum – Emitter template number

particletype – Number of the particle template

Return Value:
None

PR_SetEmitterRandomDistance

Function:
Sets the maximum distance a particle can be created from an emitter

Declaration:
void PR_SetEmitterRandomDistance (PR_DWORD emitnum,

PR_DWORD radius)
Remarks:
Normally an emitter will create a particle at the location of the emitter itself. Calling this routine will create particles random distances away from the emitter. The radius parameter is the largest distance a particle will be created away from the emitter. This is useful with emitters that create more than one particle during a frame.

Parameters:
emitnum – Emitter template number

radius -

Return Value:
None

PR_SetEmitterRandomVelocity

Function:
Sets the maximum velocity for a particle created by an emitter

Declaration:
void PR_SetEmitterRandomVelocity (PR_DWORD emitnum,

PR_DWORD speed)
Remarks:
Normally an emitter will create a particle that does not have a velocity. Calling this routine will create particles that have a random velocity. The speed parameter is the largest velocity in any axis. This is useful with emitters that create more than one particle during a frame.

Parameters:
emitnum – Emitter template number

speed – Maximum velocity in any direction

Return Value:
None

PR_SetEmitterRotation

Function:
Sets the angular rotation for an emitter

Declaration:
void PR_SetEmitterRotation (PR_DWORD emitnum, PR_MATRIX BaseRotation,

PR_MATRIX AngularVelocity, PR_POINT *distance)
Remarks:
An emitter can rotate about its origin, creating particles in a circular ‘orbit’ around the emitter’s location. During each frame, the AngularVelocity matrix is added to the BaseRotation, and then the distance vector is transformed by the resulting matrix to give the final location relative to the emitter’s location.

Put the starting rotation matrix in BaseRotation, and the difference in rotation in the AngularVelocity matrix. You can create these matrices using the PR_MatrixRotate routine. You will probably want to modify the BaseRotation matrix for different emitters, depending on the angle the projectile is fired at.

Parameters:
emitnum – Emitter template number

BaseRotation – Initial rotation matrix

AngularVelocity – Amount of rotation added each frame

distance – Initial distance away from the emitter’s location.

Return Value:
None

PR_SetEmitterSpawnProc

Function:
Sets the spawn proceduare for an emitter

Declaration:
void PR_SetEmitterSpawnProc (PR_DWORD emitnum,

void (*spawnproc)(void *emit))
Remarks:
This routine is not used by the particle system, but the spawn procedure could be used by a user defined collision routine.

Parameters:
emitnum – Emitter template number

spawnproc – Procedure to call when spawning a new emitter

Return Value:
None

PR_SetEmitterTimeLimit

Function:
Sets the lifespan of an emitter

Declaration:
void PR_SetEmitterTimeLimit (PR_DWORD emitnum,

PR_DWORD numframes)
Remarks:
When this routine is called, the emitter will terminate after the given number of frames.

Parameters:
emitnum – Emitter template number

numframes – Number of frames before the emitter terminates

Return Value:
None

PR_SetParticleAlpha

Function:
Sets the alpha fading parameters for a particle

Declaration:
void PR_SetParticleAlpha (PR_DWORD partnum, PR_WORD initial,

PR_DWORD delta)
Remarks:
A particle can fade out using alpha blending. This routine lets you set the initial and delta values for alpha fading. The delta value is added to the current alpha of the particle for each frame. For example, the initial value could be 255, and the delta value –1. When the alpha reaches 0 or less, the particle terminates.

The alpha must not exceed 255, so positive values of the delta value should not be used unless the particle has a time limit which guarantees it will not overflow.

Using alpha fading requires that the first value in the entity’s userdata array contains the material number to fade. For example:

ParticleEntities[i]->userdata[0] = ParticleMaterials[i];

Parameters:
partnum – Particle template number

initial – Starting alpha value

delta – Added to current alpha each frame

Return Value:
None

PR_SetParticleAnimation

Function:
Sets the animation parameters for a particle

Declaration:
void PR_SetParticleAnimation (PR_DWORD partnum, PR_DWORD start,

 PR_DWORD end, PR_DWORD delay, PR_UCHAR loop)
Remarks:
Animated particles are useful for explosion sprites. Animation is not handled by the particle system. Only the current animation frame is computed and passed on to the particle’s drawing callback routine. The callback routine must render the appropriate object based on the frame number. You will likely have an array of PR_OBJECTs used for particles, so the current frame number could be used as in index into the array. For example:

particle->Entity->shape = ParticleObjects[particle->CurrentObject];

The delay parameter is used to set delay values between each frame of animation. If the loop parameter is TRUE, the animation will loop. If looping is not enabled, the particle will terminate after the animation has reached the last frame.

Parameters:
partnum – Particle template number

start – Starting frame number of the animation

end – Ending frame number of the animation

delay – Delay between animation frames

loop – If TRUE, animation will loop

Return Value:
None

PR_SetParticleCollisionProc

Function:
Sets the collision callback routine for a particle

Declaration:
void PR_SetParticleCollisionProc (PR_DWORD partnum,

void (*collideproc)(void *particle))
Remarks:
If this routine is called, a user defined collision detection routine is called for each update of the particle.

Parameters:
partnum – Particle template number

collideproc – Pointer to a user defined routine

Return Value:
None

PR_SetParticleDrag

Function:
Sets the amount of drag for a particle

Declaration:
void PR_SetParticleDrag (PR_DWORD partnum, PR_REAL drag)
Remarks:
If this routine is called, the x and z velocities are multiplied by a drag value each frame.

Parameters:
partnum – Particle template number

drag – Drag factor

Return Value:
None

PR_SetParticleDrawProc

Function:
Sets the draw callback routine for a particle

Declaration:
void PR_SetParticleDrawProc (PR_DWORD partnum,

void (*drawproc)(void *particle))
Remarks:
This routine is required, since it assigned a drawing function for a particle template. This callback routine must use PR_TransformEntity and PR_RenderEntity to show the particle. The entity associated with the particle is stored in particle->Entity. Addition code may be needed to set up animated particles and special effects like reflections.

Parameters:
partnum – Particle template number

drawproc – Pointer to a user defined drawing procedure

Return Value:
None

PR_SetParticleEntity

Function:
Sets the entity associated with a particle

Declaration:
void PR_SetParticleEntity (PR_DWORD partnum, PR_ENTITY *entity)
Remarks:
This routine sets the entity associated with a particle template. It is required.

The entity’s scale and position are modified by the particle system before calling the user defined drawing procedure.

Parameters:
partnum – Particle template number

entity – Pointer to the entity associated with a particle.

Return Value:
None

PR_SetParticleGravity

Function:
Sets the gravity for a particle

Declaration:
void PR_SetParticleGravity (PR_DWORD partnum, PR_REAL gravity)
Remarks:
If this routine is called, the gravity value will be added to the particle’s velocity each frame.

Parameters:
partnum – Particle template number

gravity – Amount of gravity added to y velocity

Return Value:
None

PR_SetParticleMovement

Function:
Sets the movement flag for a particle

Declaration:
void PR_SetParticleMovement (PR_DWORD partnum, PR_DWORD action)
Remarks:
If action is TRUE, the particle will move according to its velocity.

Parameters:
partnum – Particle template number

action – TRUE if the particles will move

Return Value:
None

PR_SetParticleScale

Function:
Sets the scaling parameters for a particle template

Declaration:
void PR_SetParticleScale (PR_DWORD partnum, PR_REAL initial,

PR_REAL delta)
Remarks:
Particles can be made to scale up or down over time. This is useful for an expanding smoke puff, or a fireball’s trail. In combination with alpha fading, you can create many types of effects. The delta value is added to the current scale each frame.

Parameters:
partnum – Particle template number

initial – Starting scale of the particle

delta – Added to the current scale each frame

Return Value:
None

PR_SetParticleTimeLimit

Function:
Sets the lifespan of a particle template

Declaration:
void PR_SetParticleTimeLimit (PR_DWORD partnum,

PR_DWORD numframes)
Remarks:
When this routine is called, the particle will terminate after the given number of frames.

Parameters:
partnum – Particle template number

numframes – Number of frames before particle terminates

Return Value:
None

PR_UpdateEmitters

Function:
Updates all emitters currently active

Declaration:
void PR_UpdateEmitters (PR_DWORD ticks_passed)
Remarks:
Updates all emitters and calls any user callback routines required.

Parameters:
ticks_passed – Number of ticks passed since the last update

Return Value:
None

PR_UpdateParticles

Function:
Updates all particles currently active

Declaration:
void PR_UpdateParticles (PR_DWORD ticks_passed)
Remarks:
Updates all particles and calls any user callback routines required.

Parameters:
ticks_passed – Number of ticks passed since the last update

Return Value:
None

Collision Interface

Source code files – PRCL.C

The Collision Interface provides routines for detecting collisions between rays, boxes, planes, polytopes, and individual triangles.

PRCL_AllocPolytope

Function:
Allocates space for a polytope

Declaration:
PR_POLYTOPE *PRCL_AllocPolytope (PR_DWORD numplanes)

Remarks:
Allocates a polytope with a given number of planes. A polytope is any 3D object defined by planes. For collision to work properly, the polytope must be convex, meaning that none of the planes intersect with the interior of the object.

Parameters:
numtypes – Number of planes in the polytope

Return Value:
Pointer to the new polytope

PRCL_CreatePolytope

Function:
Converts a segment of an object to a polytope

Declaration:
PR_POLYTOPE *PRCL_CreatePolytope (PR_OBJECT *shape,

PR_DWORD segnum)
Remarks:
This will create planes from all of the faces in a segment, and recreate the object defined as a polytope. Only unique planes are stored in the resulting polytope, so all coplanar faces will be merged into a single plane definition. The resulting polytope must be convex for the collision routines to work properly. The maximum number of unique planes in a polytope created with this routine is 128.

Parameters:
shape – Pointer to the shape

segnum –Segment number to convert to polytope form

Return Value:
Pointer to the new polytope

PRCL_DistanceToPlane

Function:
Returns the distance from a point to a plane

Declaration:
PR_REAL PRCL_DistanceToPlane (PR_POINT *p, PR_PLANE *plane)

Remarks:
This routine will return the shortest perpendicular distance from a point to a plane. The sign of the result depends on the side of the plane the point is on.

Parameters:
p – Pointer to the point

plane – Pointer to the plane

Return Value:
Distance from point to plane

PRCL_PlaneFromPoints

Function:
Creates a plane given three noncolinear points

Declaration:
PR_DWORD PRCL_PlaneFromPoints (PR_PLANE *plane, PR_POINT *v1,

 PR_POINT *v2, PR_POINT *v3)
Remarks:
This will initialize a plane structure given three points on the plane. If the points are colinear, this function will fail and return FALSE. If the plane structure is valid, it will return TRUE.

Parameters:
plane – Pointer to the plane

v1, v2, v3 – Pointer to any 3 noncolinear points

Return Value:
Returns TRUE if the plane is valid

PRCL_RayClip

Function:
Shortens a ray given the new endpoint

Declaration:
void PRCL_RayClip (PR_RAY *src, PR_RAY *dst, PR_REAL t)

Remarks:
This routine will adjust the length of a ray given a new length parameter. Usually the t parameter will be between 0 and the length of the ray. The t value can be obtained from one of the ray intersection routines, which find out the closest point where a ray intersects an element.

Optimizations are done if the source and destination rays are the same pointer.

Parameters:
src – Pointer to the original ray

dst – Pointer to the adjusted ray

t – New ray length

Return Value:
None

PRCL_RayFromPoints

Function:
Creates a ray given start (p1) and end (p2) points

Declaration:
PR_DWORD PRCL_RayFromPoints (PR_RAY *ray, PR_POINT *p1,

PR_POINT *p2)
Remarks:
Given two 3D points, this routine will initialize a ray structure. The ray contains start, end, direction, and length information about the ray.

If the length of the ray is 0, the structure should be considered invalid, as there is only a point, not a ray.

Parameters:
ray – Pointer to the ray structure to initialize

P1 – Pointer to the start point

P2 – Pointer to the end point

Return Value:
PRCL_TRUE if the ray has a length greater than 0

PRCL_RayIntersectsBox

Function:
Determines if and where a ray intersects a box

Declaration:
PR_DWORD PRCL_RayIntersectsBox (PR_BOX *box, PR_RAY *ray,

 PR_REAL *t)
Remarks:
The nearest point of intersection between the ray and the box is returned in t. If no intersection is found, the value in t is invalid and the function returns PRCL_FALSE. If an intersection is found, the return value may have the PRCL_TRUE, PRCL_START_IN, PRCL_END_IN, and PRCL_ALL_IN bits set.

Parameters:
box – Pointer to the box

ray – Pointer to the ray

t – Pointer to the intersection parameter

Return Value:
Intersection status

PRCL_RayIntersectsPlane

Function:
Determines if and where a ray intersects a plane

Declaration:
PR_DWORD PRCL_RayIntersectsPlane (PR_RAY *ray, PR_PLANE *plane,

 PR_REAL *t)
Remarks:
The nearest point of intersection between the ray and the plane is returned in t. If no intersection is found, the value in t is invalid and the function returns PRCL_FALSE. If an intersection is found, the return value has the PRCL_TRUE bit set.

Parameters:
ray – Pointer to the ray

plane – Pointer to the plane

t – Pointer to the intersection parameter

Return Value:
Intersection status

PRCL_RayIntersectsPolytope

Function:
Determines if and where a ray intersects a polytope

Declaration:
PR_DWORD PRCL_RayIntersectsPolytope (PR_POLYTOPE *tope,

PR_REAY *ray, PR_REAL *t, PR_DWORD *planebits)
Remarks:
The nearest point of intersection between the ray and the polytope is returned in t. If no intersection is found, the value in t is invalid and the function returns PRCL_FALSE. If an intersection is found, the return value has the PRCL_TRUE bit set.

Parameters:
tope – Pointer to the polytope

Ray – Pointer to the ray

t – Pointer to the intersection parameter

Planebits – Pointer to the plane bit status

Return Value:
Intersection status

PRCL_RayIntersectsTriangle

Function:
Determines if and where a ray intersects a triangle

Declaration:
PR_DWORD PRCL_RayIntersectsTriangle (PR_RAY *ray, PR_VERTEX *v0,

 PR_VERTEX *v1, PR_VERTEX *v2, PR_REAL *t)

Remarks:
The nearest point of intersection between the ray and the triangle is returned in t. If no intersection is found, the value in t is invalid and the function returns PRCL_FALSE. If an intersection is found, the return value has the PRCL_TRUE bit set. Ray intersections are done on the transformed version of the vertex, which is stored in the vertex->vdata->vx, vy, and vz fields. If you need to use world coordinates instead of view space coordinates, you must copy the original vertex coordinates into the vdata structure above before calling,

Parameters:
Ray – Pointer to the ray

V0 - Pointer to the first vertex in the triangle

V1 - Pointer to the second vertex in the triangle

V2 - Pointer to the third vertex in the triangle

t – Pointer to the intersection parameter

Return Value:
Intersection status

PRCL_TransformPlane

Function:
Transforms a plane by an orthogonal matrix

Declaration:
void PRCL_TransformPlane (PR_PLANE *Src, PR_PLANE *dst,

PR_MATRIX m);

Remarks:
Currently untested

Parameters:
src - Pointer to the original plane

dst - Pointer ot the transformed plane

m - Orthogonal matrix

Return Value:
None

PRCL_TransformPolytope

Function:
Transforms a polytope by an orthogonal matrix

Declaration:
void PRCL_TransformPolytope (PR_POLYTOPE *src,

PR_POLYTOPE *dst, PR_MATRIX m);

Remarks:
Currently untested

Parameters:
src - Pointer to the original polytope

Dst - Pointer ot the transformed polytope

M - Orthogonal matrix

Return Value:
None

Appendix A - Render Method List

The following is a listing of all the rendering modes available for triangles and sprites.

Note that there is no difference between low accuracy, linear, and perspective texture mapping when using 3D hardware (perspective is done automatically).

Number
Name
Description

0
NULL_TYPE
Rejected immediately

1
T_WIREFRAME
Wireframe with a constant color.

2
T_CFLAT
Flat shaded with a constant color

3
T_FLAT
Flat shaded with light sources

4
T_CGOURAUD
Gouraud shaded with constant colors

5
T_GOURAUD
Gouraud shaded with light sources

6
T_LTEXTURED
Low accuracy texture mapping with no UV wrapping, and any size texture

7
T_LXTEXTURED
Low accuracy texture mapping with no UV wrapping, any size texture, and transparency

8
T_TEXTURED
Linear texture mapping with no UV wrapping, and any size texture

9
T_WTEXTURED
Linear texture mapping with UV wrapping and 256x256 textures

10
T_XTEXTURED
Linear texture mapping with no UV wrapping, any size texture, and transparency

11
T_XWTEXTURED
Linear texture mapping with UV wrapping, 256x256 textures, and transparency

12
T_LCFLAT_TEXTURED
Low accuracy flat shaded texture mapping with a constant shade, no UV wrapping, and any size texture

13
T_LXCFLAT_TEXTURED
Low accuracy flat shaded texture mapping with a constant shade, no UV wrapping, any size texture, and transparency

14
T_CFLAT_TEXTURED
Linear flat shaded texture mapping with a constant shade, no UV wrapping, and any size texture

15
T_WCFLAT_TEXTURED
Linear flat shaded texture mapping with a constant shade, UV wrapping, and 256x256 textures

16
T_XCFLAT_TEXTURED
Linear flat shaded texture mapping with a constant shade, no UV wrapping, any size texture, and transparency

17
T_XWCFLAT_TEXTURED
Linear flat shaded texture mapping with a constant shade, UV wrapping, 256x256 textures, and transparency

18
T_FLAT_TEXTURED
Linear flat shaded texture mapping with light sources, no UV wrapping, and any size texture

19
T_WFLAT_TEXTURED
Linear flat shaded texture mapping with light sources, UV wrapping, and 256x256 textures

20
T_XFLAT_TEXTURED
Linear flat shaded texture mapping with light sources, no UV wrapping, any size texture, and transparency

21
T_XWFLAT_TEXTURED
Linear flat shaded texture mapping with light sources, UV wrapping, 256x256 textures, and transparency

22
T_LFLAT_TEXTURED
Low accuracy flat shaded texture mapping with light sources, no UV wrapping, and any size texture

23
T_LXFLAT_TEXTURED
Low accuracy flat shaded texture mapping with light sources, no UV wrapping, any size texture, and transparency

24
T_LCGOURAUD_TEXTURED
Low accuracy gouraud shaded texture mapping with constant shades, no UV wrapping, and any size texture

25
T_LXCGOURAUD_TEXTURED
Low accuracy gouraud shaded texture mapping with constant shades, no UV wrapping, any size texture, and transparency

26
T_CGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with constant shades, no UV wrapping, any size texture, and 8 bit gouraud accuracy

27
T_WCGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with constant shades, UV wrapping, 256x256 textures, and 8 bit gouraud accuracy

28
T_XCGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with constant shades, no UV wrapping, any size texture, transparency, and 8 bit gouraud accuracy

29
T_XWCGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with constant shades, UV wrapping, 256x256 textures, transparency, and 8 bit gouraud accuracy

30
T_LGOURAUD_TEXTURED
Low accuracy gouraud shaded texture mapping with light sources, no UV wrapping, and any size texture

31
T_LXGOURAUD_TEXTURED
Low accuracy gouraud shaded texture mapping with light sources, no UV wrapping, any size texture, and transparency

32
T_GOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with light sources, no UV wrapping, any size texture, and 8 bit gouraud accuracy

33
T_WGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with light sources, UV wrapping, 256x256 textures, and 8 bit gouraud accuracy

34
T_XGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with light sources, no UV wrapping, any size texture, transparency, and 8 bit gouraud accuracy

35
T_XWGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with light sources, UV wrapping, 256x256 textures, transparency, and 8 bit gouraud accuracy

36
T_LTRANSLUCENT_TEXTURED
Low accuracy translucent textured mapping with no UV wrapping, and any size texture

37
T_LXTRANSLUCENT_TEXTURED
Low accuracy translucent textured mapping with no UV wrapping, transpacency, and any size texture

38
T_TRANSLUCENT_TEXTURED
Linear translucent texture mapping with no UV wrapping, and any size texture

39
T_WTRANSLUCENT_TEXTURED
Linear translucent texture mapping with UV wrapping, 256x256 textures

40
T_XTRANSLUCENT_TEXTURED
Linear translucent texture mapping with UV wrapping, 256x256 textures, and transparency

41
T_XWTRANSLUCENT_TEXTURED
Linear translucent texture mapping with UV wrapping, 256x256 textures, and transparency

42
T_PCGOURAUD
Perspective Gouraud shaded with constant colors

CURRENTLY NOT SUPPORTED

43
T_PGOURAUD
Perspective Gouraud shaded with light sources

CURRENTLY NOT SUPPORTED

44
T_PTEXTURED
Perspective texture mapping with no UV wrapping, and any size texture

45
T_PWTEXTURED
Perspective texture mapping with UV wrapping and 256x256 textures

46
T_PXTEXTURED
Perspective texture mapping with no UV wrapping, any size texture, and transparency

47
T_PXWTEXTURED
Perspective texture mapping with UV wrapping, 256x256 textures, and transparency

48
T_PCFLAT_TEXTURED
Perspective flat shaded texture mapping with a constant shade, no UV wrapping, and any size texture

49
T_PWCFLAT_TEXTURED
Perspective flat shaded texture mapping with a constant shade, UV wrapping, and 256x256 textures

50
T_PXCFLAT_TEXTURED
Perspective flat shaded texture mapping with a constant shade, no UV wrapping, any size texture, and transparency

51
T_PXWCFLAT_TEXTURED
Perspective flat shaded texture mapping with a constant shade, UV wrapping, 256x256 textures, and transparency

52
T_PFLAT_TEXTURED
Perspective flat shaded texture mapping with light sources, no UV wrapping, and any size texture

53
T_PWFLAT_TEXTURED
Perspective flat shaded texture mapping with light sources, UV wrapping, and 256x256 textures

54
T_PXFLAT_TEXTURED
Perspective flat shaded texture mapping with light sources, no UV wrapping, any size texture, and transparency

55
T_PXWFLAT_TEXTURED
Perspective flat shaded texture mapping with light sources, UV wrapping, 256x256 textures, and transparency

56
T_PCGOURAUD_TEXTURED8
Perspective gouraud shaded texture mapping with constant shades, no UV wrapping, any size texture, and 8 bit gouraud accuracy

57
T_PWCGOURAUD_TEXTURED8
Perspective gouraud shaded texture mapping with constant shades, UV wrapping, 256x256 textures, and 8 bit gouraud accuracy

58
T_PXCGOURAUD_TEXTURED8
Linear gouraud shaded texture mapping with constant shades, no UV wrapping, any size texture, transparency, and 8 bit gouraud accuracy

59
T_PXWCGOURAUD_TEXTURED8
Perspective gouraud shaded texture mapping with constant shades, UV wrapping, 256x256 textures, transparency, and 8 bit gouraud accuracy

60
T_PGOURAUD_TEXTURED8
Perspective gouraud shaded texture mapping with light sources, no UV wrapping, any size texture, and 8 bit gouraud accuracy

61
T_PWGOURAUD_TEXTURED8
Perspective gouraud shaded texture mapping with light sources, UV wrapping, 256x256 textures, and 8 bit gouraud accuracy

62
T_PXGOURAUD_TEXTURED8
Perspective gouraud shaded texture mapping with light sources, no UV wrapping, any size texture, transparency, and 8 bit gouraud accuracy

63
T_PXWGOURAUD_TEXTURED8
Perspective gouraud shaded texture mapping with light sources, UV wrapping, 256x256 textures, transparency, and 8 bit gouraud accuracy

64
T_PTRANSLUCENT_TEXTURED
Perspective translucent texture mapping with no UV wrapping, and any size texture

65
T_PWTRANSLUCENT_TEXTURED
Perspective translucent texture mapping with UV wrapping, 256x256 textures

66
T_PXTRANSLUCENT_TEXTURED
Perspective translucent texture mapping with UV wrapping, 256x256 textures, and transparency

67
T_PXWTRANSLUCENT_TEXTURED
Perspective translucent texture mapping with UV wrapping, 256x256 textures, and transparency

68
T_SOURCETRANSFORM
Changes the destination buffer only. This is used for shadows. For example a gouraud shade table with 1 row can be created which darkens the colors.

Currently not supported in hardware.

69
T_LIGHTMAP_ADD
Texture colors are added to the existing colors in the frame buffer.

This is used for phong shading and flare effects. In software rendering, this is the same as translucent texture mapping with a special table.

In hardware, alpha blending is used to add the source and destination colors.

The following methods are available in hardware rendering only:

70
T_LIGHTMAP_TIMES
Used for lightmaps.. Currently not supported

71
T_TRANSLUCENT_GOURAUD
Translucent Gouraud shaded with light sources

72
T_TRANSGOUR_TEXTURED
Translucent Gouraud shaded texture with light sources

73
T_RGB_GOURAUD
Precalculated RGB gouraud shaded.

74
T_RGB_TEXTURED
Precalculated RGB gouraud shaded texture

75
T_RGB_GOURAUD_DYN
Precalculated RGB gouraud shaded with dynamic lighting

76
T_RGB_TEXTURED_DYN
Precalculated RGB gouraud shaded texture with dynamic lighting

The following methods are similar to those above, except they use alpha blending for a fogging effect.

77
T_FOG_GOURAUD

78
T_FOG_TEXTURED

79
T_FOG_XTEXTURED

80
T_FOG_FLAT_TEXTURED

81
T_FOG_XFLAT_TEXTURED

82
T_FOG_GOURAUD_TEXTURED

83
T_FOG_XGOURAUD_TEXTURED

84
T_FOG_TRANSLUCENT_TEXTURED

85
T_FOG_XTRANSLUCENT_TEXTURED

86
T_FOG_LIGHTMAPA

87
T_FOG_TRANSLUCENT_GOURAUD

88
T_FOG_TRANSGOUR_TEXTURED

89
T_FOG_RGB_GOURAUD

90
T_FOG_RGB_TEXTURED

91
T_FOG_RGB_GOURAUD_DYN

92
T_FOG_RGB_TEXTURED_DYN

The following rendering methods are reserved for Landscape Studio. These are used for varying amounts of alpha at each vertex. Alpha encoding is stored in the face’s backface material field.

93
T_WATER_SPECIAL

94
T_FOG_WATER_SPECIAL

Appendix B - Image Format List

The following image formats are supported and can be used for textures.

Type
Description

PCX
8 bit RLE compressed

BLK
WGT raw format (no palette)

PAK
WGT RLE format (no palette)

LBM

IFF
Same as LBM

BMP
Windows Bitmap (8 bit uncompressed)

3DF
3Dfx Texus Format (multiple types)

�

Copyright 1997 Egerter Software

Page 39

