

The Window System

by

Malcolm Taylor�Contents

 Introduction

 Overview

 Sections

 Event handling

 Graphics

 Help file syntax

 Configuration files

 Reference

 Window class hierachy

 Key/Scan codes

 Window style constants

 Keyboard status constants

 Standard config file entries

 Alphabetical list of all symbols

 Event handling macros in detail

 Example response table

 Alphabetical list of event macros

 list of header files

�Overview

 This is an event driven windowing system written for djgpp.

 The goal was to create a standalone library that would give me a fully functional windowing front-end to simplify development of my applications.

 There are two main classes in the library:

 class WinSystem

 class Window

 The WinSystem class handles the windows and events. It does all the dispatching of keyboard/mouse and queued events from windows.

 There is an instance of this class called ws which is used to access system specific functions.

 The Window class handles the actual windows. It handles the drawing and refreshing of the window, as well as moving and resizing.

 It is also the base class for most of the other classes in the library.

 All actions within the system occur as events. These events are easily handled by a window by using event macros or by overloading the Window::DoEvents(...) function.

 Graphical functions are done through a simple VESA SVGA graphics library. All functions work in 8,15 and 24bit, the 8bit mode uses dithering to increase the colour resolution.

See Also:

 Window class hierachy

 Events

 Graphics

Event Handling

 All I/O occurs through events.

 The WinSystem class collects all the system and window events in a queue, dispatching them when given control.

 Control is passed to the Window System by using one of two functions:

 WinSystem::CheckForEvents()

 Checks for system events and processes any queued events.

 WinSystem::RunEvents()

 Keeps checking until stopped by:

 WinSystem::StopRunningEvents()

 Which sets a flag that must be reset by:

 WinSystem::ResetEvents()

 If your functions or classes do a large amount of processing then call WinSystem::CheckEvents() regularly to let the system keep up to date.

 The access to these functions is gained through the only instance of this class:

 WinSystem ws

 The Window System dispatches events to the Windows down from the top window (the desktop), down through the windows, to their children etc.

 Any windows with focus get the events first.

 The class event carries all the information for these events.

 It has room for an int type and six integer values.

 The Window processes the event with Window::DoEvents(event *ev) which can be overloaded.

 However there are macros that automatically setup a 'response table' for events calling functions within the class (see event macros).

 Individual classes often define their own event response macros. These classes will often have a control id associated with them which they will send in the event to identify the particular control that the event came from.

Graphics

 The graphics routines require a VESA compatible SVGA card (or TSR). Although there is a VGA 16 colour mode for compatibility which is not as fast as the SVGA modes.

 Most drawing is done to memory buffers referred to by the ViewBuffer structure.

 These are created by:

 ViewBuffer *NewBuffer(int width,int height)

 ViewBuffer *NewBuffer24(int width,int height)

 And destroyed by:

 void DeleteBuffer(ViewBuffer *buf)

 A buffer that points to part or all of another buffer can be created with:

 ViewBuffer *SubBuffer(ViewBuffer *buf, int x1, int y1, int x2, int y2)

 The buffer returned refers to the rectangle x1,x2,y1,y2 on buf, so any writing to it will appear on buf.

 These are the graphics functions that write directly to the screen.

 void ScreenRectangle(int x1, int y1, int x2, int y2, int col)

 void ScreenBox(int x1, int y1, int x2, int y2, int col)

 void ScreenRGBPixel(int x, int y, int r, int g, int b)

 void BltToScreen(ViewBuffer *from, int x, int y)

 void BltFromScreen(ViewBuffer *to, int x, int y)

 void BltToScreenTransparent(ViewBuffer *from, int x, int y)

 In general these functions should not be used as they can cause inconsistancies to arise between what is on screen and what is in the windows' buffers.

 The basic graphics functions are divided into two types.

 The first type accepts a colour number between 0 and 255 which represents a colour.

 Numbers 0 to 19 are scales of the system colour (0=black, 19=white normally).

 Numbers 20 to 235 are colours given by 'blue + green*6 + red*36 + 20' where blue, green and red vary from 0 to 5.

 Numbers 236 to 255 should not be used directly. These are allocated with the functions:

 int AllocColour(int r, int g, int b)

 and freed with:

 void FreeColour(int c)

 The second type are prefixed with RGB and accept an r,g,b triple that gives the colour.

 Dithering is used in 8bit modes to give a better colour resolution.

 The basic functions are:

 void Box(ViewBuffer *buf, int x1, int y1, int x2, int y2, int c);

 void RGBBox(ViewBuffer *buf, int x1, int y1, int x2, int y2, int r, int g, int b);

 void Rect(ViewBuffer *buf, int x1, int y1, int x2, int y2, int c);

 void RGBRect(ViewBuffer *buf, int x1, int y1, int x2, int y2, int r, int g, int b);

 void Line(ViewBuffer *buf, int x1, int y1, int x2, int y2, int c);

 void RGBLine(ViewBuffer *buf, int x1, int y1, int x2, int y2, int r, int g, int b);

 void Pixel(ViewBuffer *buf, int x, int y, int c);

 void RGBPixel(ViewBuffer *buf, int x, int y, int r, int g, int b);

 Text can be drawn using standard '.fnt' fonts.

 There are four fonts loaded by the Window System that can be used, these are:

 FONT *SysFont

 FONT *SysFontBold

 FONT *SysFontItallic

 FONT *SysFontBoldItallic

 Other fonts can be loaded with:

 FONT *LoadFont(char *name)

 And destroyed with:

 void DeleteFont(FONT *font)

 Text is written with:

 void WriteChar(ViewBuffer *buf, int x, int y, int col, FONT *font, int ch)

 void WriteText(ViewBuffer *buf, int x, int y, int col, FONT *font, char *text)

 You can get the width of a string with:

 int StringWidth(const char *text, FONT *font)

Help File Syntax

 There is support for a simple hypertext help file system.

 At present the files are plain text, but I will be adding support for compression soon.

 A help file is divided into topics, the first of which is usually the contents page.

 The topic name is signified by a surrounding it with '|' characters on it's own line, eg.

|Topic name|

 The topic names are not case sensitive.

 The text following the topic name until the end of the file or the next topic name is the topic's body.

 There are a few simple formatting characters proceeded with the '\' character:

 \B,\b - Bold text.

 \I,\i - Itallic text.

 \U,\u - Single underline.

 \V,\v - Double underline.

 \H,\h - Hidden text.

 The capital letter will turn on the option and the lower-case turns it off.

 The hidden text hides all text until turned off. It's use lies in hot-spots.

 To change the colour of the text use the character '&' followed by a three digit number describing a colour (see graphics).

 A hot-spot that points to a topic can be created by surrounding the text with '#' characters.

 The text within must be the name of the topic (case doesn't matter).

 This is where the hidden text comes in. To put the word "topic" on screen to point to topic "topic name" you would do:

 #topic\H name\h#

 So that " name" gets hidden, but still makes up part of the topic name.

 There are also some style settings available. The next release will allow setting up of these styles within a help file (as well as support for different fonts), but for now they have default setting that may or may not be useful.

 \0,\1, ... \9

 These select from 10 different styles. They are:

 0 - Normal text.

 1 - For headings.

 2 - For hot-spots.

 3 - Bold colour.

 4 - Coloured normal text.

 5 - Underlined coloured text.

 The rest are set to nothing.

 To get any of the special characters used just double them up eg. '\\', '&&', '##', '||'.

 That is all there is to it. The HelpWindow class takes care of the rest of it.

See Also:

 HelpTopic

 HelpDataBase

 HelpWindow

Configuration files

 All the default settings for the window system are stored in a configuration file that is read when the system is initialised. These files can contain any general config data for your program as well.

 There is one function that is used to access this file:

 char *WinSystem::GetConfigItem (const char *name)

 This will return a pointer to the string that is associated with the config item name.

 Config files follow a very simple and general format:

 item name = item data

 Where 'item name' is the name of the config item and 'item data' is the data for that item.

 The parser will ignore any white space before the item name, the equal sign and the item data. For example this is identical to the previous example:

 item name= item data

 Comments can be added and are signified by a line starting with any of these characters

 # % ; \ / ' " | $ @ ! :

�A Hierachy Listing For Class Window

�

������

��

��

���

��

����

�

����

��

��

����

���

��

����

�

�

���

���

�

�

���

���

�

�Keyboard Character and Scan Codes

 The keyboard events use a key code and a scan code. Together these describe the key that the event refers to.

 The numbers refer to the scan/key code in hex.

Key Normal Shift Control Alt

ESC 01/1B 01/1B 01/1B 01/00

1 02/31 02/21 78/00

2 03/32 03/40 03/00 79/00

3 04/33 04/23 7A/00

4 05/34 05/24 7B/00

5 06/35 06/25 7C/00

6 07/36 07/5E 07/1E 7D/00

7 08/37 08/26 7E/00

8 09/38 09/2A 7F/00

9 0A/39 0A/28 80/00

0 0B/30 0B/29 81/00

- 0C/2D 0C/5F 0C/1F 82/00

= 0D/3D 0D/2B 83/00

Bksp 0E/08 0E/08 0E/7F 0E/00

Tab 0F/09 0F/00 94/00 A5/00

q 10/71 10/51 10/11 10/00

w 11/77 11/57 11/17 11/00

e 12/65 12/45 12/05 12/00

r 13/72 13/52 13/12 13/00

t 14/74 14/54 14/14 14/00

y 15/79 15/59 15/19 15/00

u 16/75 16/55 16/15 16/00

i 17/69 17/49 17/09 17/00

o 18/6F 18/4F 18/0F 18/00

p 19/70 19/50 19/10 19/00

[1A/5B 1A/7B 1A/1B 1A/00

] 1B/5D 1B/7D 1B/1D 1B/00

Enter 1C/0D 1C/0D 1C/0A 1C/00

a 1E/61 1E/41 1E/01 1E/00

s 1F/73 1F/53 1F/13 1F/00

d 20/64 20/44 20/04 20/00

f 21/66 21/46 21/06 21/00

g 22/67 22/47 22/07 22/00

h 23/68 23/48 23/08 23/00

j 24/6A 24/4A 24/0A 24/00

k 25/6B 25/4B 25/0B 25/00

l 26/6C 26/4C 26/0C 26/00

; 27/3B 27/3A 27/00

' 28/27 28/22 28/00

` 29/60 29/7E 29/00

\ 2B/5C 2B/7C 2B/1C 2B/00

z 2C/7A 2C/5A 2C/1A 2C/00

x 2D/78 2D/58 2D/18 2D/00

c 2E/63 2E/43 2E/03 2E/00

v 2F/76 2F/56 2F/16 2F/00

b 30/62 30/42 30/02 30/00

n 31/6E 31/4E 31/0E 31/00

m 32/6D 32/4D 32/0D 32/00

, 33/2C 33/3C 33/00

. 34/2E 34/3E 34/00

/ 35/2F 35/3F 35/00

Grey * 37/2A 37/2A 37/00

Space 39/20 39/20 39/20 39/00

F1 3B/00 54/00 5E/00 68/00

F2 3C/00 55/00 5F/00 69/00

F3 3D/00 56/00 60/00 6A/00

F4 3E/00 57/00 61/00 6B/00

F5 3F/00 58/00 62/00 6C/00

F6 40/00 59/00 63/00 6D/00

F7 41/00 5A/00 64/00 6E/00

F8 42/00 5B/00 65/00 6F/00

F9 43/00 5C/00 66/00 70/00

F10 44/00 5D/00 67/00 71/00

F11 85/00 87/00 89/00 8B/00

F12 86/00 88/00 8A/00 8C/00

Num 7 47/00 47/37 77/00

Num 8 48/00 48/38 8D/00

Num 9 49/00 49/39 84/00

Grey - 4A/2D 4A/2D 8E/00 4A/00

Num 4 4B/00 4B/34 73/00

Num 5 4C/00 4C/35 8F/00

Num 6 4D/00 4D/36 74/00

Grey + 4E/2B 4E/2B 90/00 4E/00

Num 1 4F/00 4F/31 75/00

Num 2 50/00 50/32 91/00

Num 3 51/00 51/33 76/00

Num 0 52/00 52/30 92/00

Num . 53/00 53/2E 93/00

Key 45[5] 56/5C 56/7C

Num Enter E0/0D E0/0D E0/0A A6/00

Grey / E0/2F E0/2F 95/00 A4/00

PrtScr 72/00

Pause 00/00

Gr. Home 47/E0 47/E0 77/E0 97/00

Gr. Up 48/E0 48/E0 8D/E0 98/00

Gr. PgUp 49/E0 49/E0 84/E0 99/00

Gr. Left 4B/E0 4B/E0 73/E0 9B/00

Gr. Right 4D/E0 4D/E0 74/E0 9D/00

Gr. End 4F/E0 4f/E0 75/E0 9F/00

Gr. Down 50/E0 50/E0 91/E0 A0/00

Gr. PgDn 51/E0 51/E0 72/E0 A1/00

Gr. Ins 52/E0 52/E0 92/E0 A2/00

Gr. Del 53/E0 53/E0 93/E0 A3/00

Window style constants

 The Window class can accept several different flags for it's style argument, giving the window several styles.

 Here are the defined constants that can be used:

 WA_SAVEAREA

 Makes the window save the area behind it for fast redraw when moved or destroyed.

 WA_VISABLE

 Makes the window visable (at present an unused flag, but include it in all visable windows as it may be used in the future).

 WA_BORDER

 Gives the window a risen border.

 WA_SIZEABLE

 Gives the window a sizing border (always use with WA_BORDER).

 WA_CAPTION

 Gives the window a title bar that can have a title on it (and allows it to be dragged via the title bar).

 WA_MAXBOX

 Gives the window a maximise box that will maximise the window.

 WA_SYSBOX

 Gives the window a system box (this doesn't have any default functionality yet, but is used in a few derived classes as a close box).

 WA_TABSTOP

 Makes the window able to be a tab-stop.

 WA_CLIENT

 Makes the window a client window (is clipped by the parent's client area). Most windows will need this.

 WA_DEPENDANT

 Makes the window use a small section of the parent windows buffer. This makes the window dependant on the parent. This flag is meant for controls on dialog boxes etc. that don't move.

 Never make a window with no parent (or the top window as parent) dependant as the top window has no buffer.

 WA_TOP_WINDOW

 This flag should never be used. It signifies the window is the top window (has no parent or buffer and is dealt with internally slightly differently).

 Any combination of these can be made with '|' the bitwise or.

Keyboard status constants

 Several events will give you the status of the keyboard. This number will be a logical or combination of these defined constants:

 KBS_RIGHT_SHIFT

 If the right shift key is down.

 KBS_LEFT_SHIFT

 If the left shift key is down.

 KBS_SHIFT

 If either shift key is down.

 KBS_CTRL

 If the control key is down.

 KBS_ALT

 If the alt key is down.

 KBS_SCROLL_LOCKED

 If the scroll lock is on.

 KBS_NUM_LOCKED

 If the num lock is on.

 KBS_CAPS_LOCKED

 If the caps lock is on.

 KBS_INSERT_LOCKED

 If the insert lock is on.

 KBS_LEFT_CTRL

 If the left control key is down.

 KBS_LEFT_ALT

 If the left alt key is down.

 KBS_RIGHT_CTRL

 If the right control key is down.

 KBS_RIGHT_ALT

 If the right alt key is down.

 KBS_CAPS_DOWN

 If the caps key is down.

 KBS_SYS_RQ_DOWN

 If the SysRq key is down.

 To test for these in num test for num&KBS_XXXX which will be true in the given situation.

Standard config file entries

 The window system opens up a configuration file when it initialises and looks for several standard entries. These are given below:

Video mode entries:

 resolution

 This gives the resolution that the window system uses. This should be the horizontal by vertical resolution seperated with an 'x' eg 640x480.

 This will default to 640x480 if left out.

 colour_depth

 This gives the colour depth in bits that the window system uses. This can be 4, 8, 16 or 24. I advise that you never use 4 (ie standard VGA) unless necessary as it is significantly slower than all the other colour depths.

 This will default to 8 bits if left out.

Font entries:

 system_font

 This gives the system font used by the window system for all resolutions. This should equal the name of a font file that exists in the same directory along with three other variants which have b, i and bi added to the name.

 This must be present in the config file if none of the following are present.

 system_font_0

 This gives the system font used for resolutions of 320x200.

 This must be present in the config file if 'system_font' isn't and the program will use 320x200 modes.

 system_font_1

 This gives the system font used for resolutions of 640x400 and 640x480.

 This must be present in the config file if 'system_font' isn't and the program will use 640x400 or 640x480 modes.

 system_font_2

 This gives the system font used for all other greater resolutions.

 This must be present in the config file if 'system_font' isn't and the program will use these modes.

System colour entries:

 desktop_colour

 This gives the colour number for the desktop. It should be an RGB triple seperated by commas.

 system_colour

 This gives the system colour. It should be an RGB triple seperated by commas which will be used to create the system colours which are normally grey. Do not make this colour too dark.

 title_bar_colour

 This gives the colour of the title bar. It should be an RGB triple seperated by commas.

 mouse_colour

 This gives the colour of the mouse cursor. It should be an RGB triple seperated by commas. This colour should not be too different from the system colour as the system colour is used on the edges of the cursor.

Sound entries:

 sound_card

 This determines the sound card. It must equal the name of a sound blaster type (eg 'SB16', 'SB'). For no sound should equal 'none'.

 sound_blaster_irq

 This can be used to overide the default of 5 and/or the BLASTER environment variable.

 sound_blaster_dma

 This can be used to overide the default of 1 and/or the BLASTER environment variable.

 sound_blaster_high_dma

 This can be used to overide the default of 5 and/or the BLASTER environment variable.

 sound_blaster_port

 This can be used to overide the default of 0x220 and/or the BLASTER environment variable.

 mixing_rate

 This specifies the mixing rate in Hz. The default is the maximum possible (which can slow down some computers).

�An Index of all Public Symbols

•int AddResource (char *filename, char *resname, BYTE *resource, int len)

 Declared in resource.h.

 This function adds the data resource with name resname and length len to the resource file filename.

See Also:

 ResourceManager

 AddResourceCompressed

 DeleteResource

•int AddResourceCompressed (char *filename, char *resname, BYTE *resource, int len)

 Declared in resource.h.

 This function compresses then adds the data resource with name resname and length len to the resource file filename.

See Also:

 ResourceManager

 AddResource

 DeleteResource

•int AllocColour (int r, int g, int b)

 Declared in graphics.h.

 This function will allocate a colour number for a particular colour. In 256 colour modes the colour numbers 236-255 are not used by the library and this function provides support to use them.

 This function returns a colour number or -1 if it fails to allocate a colour.

See Also:

 FreeColour

•ViewBuffer *ArrowIcns[]

 Declared in cursors.h.

 These are the icons for the arrows on the slider buttons. The directions go clockwise from up.

•class AutoMenu

 Declared in menu.h.

 This class is publicly derived from Menu. It automatically constructs a menu from MenuRes data.

 AutoMenu (Window *parent, MenuRes *items, int nItems, int x, int y, int w)

 ~AutoMenu ()

See also:

 class Menu

 class PopupMenu

•AutoMenu::AutoMenu (Window *parent, MenuRes *items, int nItems, int x, int y, int w)

 The constructor for class AutoMenu. Takes a pointer to nItems MenuRes structures containing the data from which to make the menu. The menu is created at position x,y with a width of w.

See also:

 class AutoMenu

 struct MenuRes

•AutoMenu::~AutoMenu ()

 The destructor for class AutoMenu.

See also:

 class AutoMenu

•class AutoPopupMenu

 Declared in menu.h.

 This class is publicly derived from PopupMenu. It automatically constructs a popup menu from PopupMenuRes data.

 AutoPopupMenu (Window *parent, PopupMenuRes *items, int nItems, int x, int y)

 ~AutoPopupMenu ()

See also:

 class Menu

 class PopupMenu

•AutoPopupMenu::AutoPopupMenu (Window *parent, PopupMenuRes *items, int nItems, int x, int y)

 The constructor for class AutoPopupMenu. Takes a pointer to nItems PopupMenuRes structures containing the data from which to make the popup menu. The menu is created at position x,y.

See also:

 class AutoPopupMenu

 struct PopupMenuRes

•AutoPopupMenu::~AutoPopupMenu ()

 The destructor for class AutoPopupMenu.

See also:

 class AutoPopupMenu

•class BasicButton

 Declared in button.h.

 This class is the base class for all buttons. It draws the button and handles the mouse events for buttons.

 BasicButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2)

 void Select ()

 protected:

 void PaintWindow (int x1, int y1, int x2, int y2)

 void LButtonDown (int x, int y, int key_stat, int timer)

 void LButtonUp (int x, int y, int key_stat)

 void MouseMove (int x, int y, int key_stat, int but_stat)

 void MoveOutside (int x, int y, int key_stat, int but_stat)

 void Focus ()

 void UnFocus ()

See also:

 class TextButton

 class IconButton

•BasicButton::BasicButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2)

 The constructor for class BasicButton. Constructs a button with ControlID ID in the rectangle x1,y1,x2,y2.

See also:

 class BasicButton

•void BasicButton::Select ()

 A call to this function presses the button. Used by keyboard accelerators.

See also:

 class BasicButton

•void BitBlt (ViewBuffer *to, int x, int y, ViewBuffer *from, int x1, int y1, int x2, int y2)

 Declared in graphics.h.

 Performs a BitBlt of the rectangle x1,y1,x2,y2 on from to the position x,y on to.

See also:

 Graphics

•void BitBltCursor (Cursor *cur, int x, int y)

 Declared in cursors.h.

 Performs a BitBlt of the cursor onto the screen at position x,y.

See also:

 Cursor

•void BitBltToScreen24 (ViewBuffer *from, int x, int y)

 Declared in graphics.h.

 This function BitBlts a 24bit viewbuffer directly to the screen. This does any dithering and conversion on the fly.

See Also:

 Graphics

 BltToScreen

•void BitBltTransparent (ViewBuffer *to, int x, int y, ViewBuffer *from, int x1, int y1, int x2, int y2)

 Declared in graphics.h.

 Performs a BitBlt of the rectangle x1,y1,x2,y2 on from to the position x,y on to. All zero colour pixels are treated as transparent and will not be drawn.

See also:

 Graphics

•void BltFromScreen (ViewBuffer *to, int x, int y)

 Declared in graphics.h.

 Performs a BitBlt from the screen at position x,y into the buffer to.

See also:

 Graphics

•void BltToScreen (ViewBuffer *from, int x, int y)

 Declared in graphics.h.

 Performs a BitBlt onto the screen at position x,y from the buffer from.

See also:

 Graphics

•void BltToScreenTransparent (ViewBuffer *from, int x, int y)

 Declared in graphics.h.

 Performs a BitBlt onto the screen at position x,y from the buffer from. All zero bytes are treated as transparent and not drawn. Note that this causes different effects in different colour depths.

See also:

 Graphics

•void Box (ViewBuffer *buf, int x1, int y1, int x2, int y2, int c)

 Declared in graphics.h.

 Draws a box including the rectangle x1,y1,x2,y2 onto the buffer buf in the colour c.

See also:

 Graphics

 RGBBox

•ViewBuffer *BuildBuffer (BYTE *data, int w, int h, BYTE *pal)

 Declared in graphics.h.

 Creates a buffer containing an image built from data translated through a palette. Each byte in the data array indexes a colour value in the pal array.

 The buffer returned must be deleted with DeleteBuffer when finished with.

See also:

 Graphics

 DeleteBuffer

•SOUND_SAMPLE *ChangeSampleFrequency (SOUND_SAMPLE *sample, int new_frequency)

 Declared in sb.h.

 This function resamples a sample to a new frequency doing linear interpolation.

See Also:

 InitialiseSound

 DeInitialiseSound

•class CheckBox

 Declared in checkbox.h.

 This class is publicly derived from class Window. This is a check-box control. It will display a check-box and a string of text.

 CheckBox (Window *parent, ControlID ID, char *text, int x, int y, int l, int isChecked)

 ~CheckBox ()

 void Check ()

 void UnCheck ()

 int isChecked ()

 protected:

 void PaintWindow (int, int, int, int)

 void LButtonDown (int, int, int)

•CheckBox::CheckBox (Window *parent, ControlID ID, char *text, int x, int y, int l, int isChecked)

 The constructor for class CheckBox.

 Constructs a checkbox at (x,y) on parent with length l (in pixels). The checkbox has ControlID ID and text (which can contain '&' which signifies the next character is the Alt key accelerator for the control).

 The isChecked argument can be left out, in which case it defaults to FALSE.

See Also:

 class CheckBox

•CheckBox::~CheckBox ()

 The destructor for class CheckBox.

See Also:

 class CheckBox

•void CheckBox::Check ()

 This function will check the checkbox if it is unchecked.

See Also:

 class CheckBox

 CheckBox::UnCheck

•void CheckBox::UnCheck ()

 This function will uncheck the checkbox if it is checked.

See Also:

 class CheckBox

 CheckBox::Check

•int CheckBox::isChecked ()

 This function returns TRUE if the checkbox is currently checked.

See Also:

 class CheckBox

 CheckBox::Check

•void Circle (ViewBuffer *buf, int x, int y, int rad, int c)

 Declared in graphics.h.

 This function draws a circle onto the ViewBuffer buf at (x,y) with radius rad and colour c.

See Also:

 Graphics

 RGBCircle

•BYTE *CompressMemory (BYTE *memory, int length, int *newlength)

 Declared in compress.h

 This function compresses the block of memory of length bytes long. The compressed data is returned and the new length is put in *newlength.

 NULL will be returned if the data is uncompressable.

See Also:

 SetCompressionMode

 DecompressMemory

•int CreateResourceFile (char *filename)

 Declared in resource.h.

 This function creates a new resource file with name filename. The new file will overwrite any old file of the same name.

See Also:

 ResourceManager

 AddResource

 DeleteResource

•struct Cursor

 Declared in cursors.h.

 ViewBuffer *cursor

 int hotx

 int hoty

 Contains the image of the cursor and the coords for the hot spot.

•BYTE *DecompressMemory(BYTE *memory,int length,int *newlength);

 Declared in compress.h

 This function decompresses the block of memory of length bytes long. The uncompressed data is returned and the new length is put in *newlength.

 NULL will be returned if there was an error.

See Also:

 SetCompressionMode

 CompressMemory

•void DeinitGraphics ()

 Declared in vesa.h.

 Closes down the graphics, returning to text mode.

See also:

 VESASetMode

•void DeInitialiseSound ()

 Declared in sb.h.

 This function de-initialises the sound driver, releasing any resources.

See Also:

 InitialiseSound

•void DeleteBuffer (ViewBuffer *buf)

 Declared in graphics.h.

 Frees all memory associated with a buffer.

See also:

 NewBuffer

 NewBuffer24

•void DeleteFont (FONT *font)

 Declared in graphics.h.

 Frees all memory associated with a font.

See also:

 LoadFont

•int DeleteResource (char *filename, char *resname)

 Declared in resource.h.

 This function deletes the resource called resname from the resource file filename.

See Also:

 ResourceManager

 AddResource

•void DeleteSample (SOUND_SAMPLE *smp)

 Declared in sb.h.

 This function deletes the sound sample smp.

See Also:

 InitialiseSound

 DeInitialiseSound

•ViewBuffer *DriveIcns[]

 Declared in cursors.h.

 These are the icons for the different types of drives. Used by the FileList class.

•class EditText

 Declared in edit.h.

 This class is a text edit control. It allows text to be entered (or only numbers).

 EditText (Window *parent, ControlID ID, const char *title, int n, int x, int y, int l)

 EditText (Window *parent, ControlID ID, const char *title, int n, int x, int y, int l, int type)

 ~EditText ()

 void SetText (const char *text)

 char *GetText ()

 void Select ()

 void SetType (int n)

 protected:

 void Focus ()

 void UnFocus ()

 void PaintWindow (int x1, int y1, int x2, int y2)

 void Timer ()

 void DrawCursor ()

 void LButtonDown (int x, int y, int kbstat)

 void LButtonUp (int x, int y, int kbstat)

 void MouseMove (int x, int y, int mbstat, int kbstat)

•EditText::EditText (Window *parent, ControlID ID, const char *title, int n, int x, int y, int l)

 EditText::EditText (Window *parent, ControlID ID, const char *title, int n, int x, int y, int l, int type)

 The constructors for class EditText. This constructs a text edit control with ControlID ID at position x,y and with length l.

 The title of the control (written above the control) is given by title. There is no title if title==NULL.

 The type can be one of four defined constants:

 EDIT_TYPE_TEXT

 Accepts all characters (default)

 EDIT_TYPE_FORCE_UPPER

 Accepts all characters, but forces them to upper case.

 EDIT_TYPE_FORCE_LOWER

 Accepts all characters, but forces them to lower case.

 EDIT_TYPE_NUMBER

 Accepts only numbers.

 EDIT_TYPE_NEG_NUM

 Accepts numbers and the minus sign.

 EDIT_TYPE_FLOAT_NUM

 Accepts numbers, minus, decimal point, 'E' and 'e' (for exponents).

See also:

 class EditText

•EditText::~EditText ()

 The destructor for class EditText.

See also:

 class EditText

•void EditText::SetText (const char *text)

 Sets the text in the text edit control to text, reseting the cursor to the beginning.

See also:

 class EditText

•char *EditText::GetText ()

 Returns a pointer to the text in the text edit control.

See also:

 class EditText

•void EditText::Select ()

 Performs the same action as pressing return within the control. Used by keyboard accelerators.

See also:

 class EditText

•void EditText::SetType (int n)

 Changes the type of the control. The valid values are described in the constructor.

See also:

 class EditText

 EditText::EditText

•void Error (char *message)

 Declared in system.h.

 Exits and prints message to the screen.

•struct event

 Declared in events.h.

 The structure that holds the information for events.

 event ()

 event (int type)

 event (int type, int n1)

 ...

 event (int type, int n1, int n2, int n3, int n4, int n5, int n6)

 Constructors.

 int Type

 int p1,p2,p3,p4,p5,p6

See also:

 Events

•class FileDlg

 Declared in filedlg.h.

 This class is publicly derived from class TabWin. It is a general file dialog box. It will allow the browsing of all drives, and return a filename.

 FileDlg (const char *title)

 FileDlg (const char *title, char *name)

 ~FileDlg ()

 char *Run ()

 private:

 void CmOK ()

 void CmCancel ()

 void SelectFile ()

 void ChangeFile ()

See also:

 class FileList

•FileDlg::FileDlg (const char *title)

 FileDlg::FileDlg (const char *title, char *name)

 The constructors for class FileDlg. These construct a file dialog box with title in the tile bar and with name as the initial name in the edit text control.

See also:

 class FileDlg

•FileDlg::~FileDlg ()

 The destructor for class FileDlg.

See also:

 class FileDlg

•char *FileDlg::Run ()

 Runs the dialog box. Returns the filename selected or NULL if the cancel button was pushed.

See also:

 class FileDlg

•class FileList

 Declared in filedlg.h.

 This class is publicly derived from class ScrollingWindow. It is a filelist mainly for use by the FileDlg class. It lists all files in the current directory and allows browsing through the hierachy (and drives).

 FileList (Window *parent, ControlID ID, int x1, int y1, int x2, int y2)

 ~FileList ()

 int GetDrive ()

 char *GetDir ()

 char *GetName ()

 void KeepPath ()

 protected:

 void PaintWindow (int x1, int y1, int x2, int y2)

 void FillList ()

 void DrawItem (int n)

 void AddItem (int type,int indent,char *name)

 void SelectItem (int n)

 void LButtonDown (int x,int y,int kbstat, int time)

 void KeyUp (int kbstat)

 void KeyDown (int kbstat)

 void KeyEnter (int kbstat)

 void Focus ()

 void UnFocus ()

 int ItemLength (int n)

 These are the event handling macros defined for the FileList class:

 E_FILELIST (ID,function)

 E_FILELISTSELECT (ID,function)

See also:

 class FileDlg

 SetupFileListDrivesDirectories

•FileList::FileList (Window *parent, ControlID ID, int x1, int y1, int x2, int y2)

 The constructor for class FileList. Creates a file list with ControlID ID at x1,y1,x2,y2.

See also:

 class FileList

•FileList::~FileList ()

 The destructor for class FileList.

See also:

 class FileList

•int FileList::GetDrive ()

 Returns the drive number (0=A:) that is currently selected.

See also:

 class FileList

•char *FileList::GetDir ()

 Returns a pointer to the directory name (absolute and with no slash at the beginning or end) that is currently selected.

See also:

 class FileList

•char *FileList::GetName ()

 Returns a pointer to the file name currently selected.

See also:

 class FileList

•void FileList::KeepPath ()

 Saves the path so that future uses of FileList will start at the same place. Should be called before leaving if everything is OK, else it should be left.

See also:

 class FileList

•ViewBuffer *FileIcn

 Declared in cursors.h.

 This is the icon for a file. Used by the FileList class.

•void FillCircle (ViewBuffer *buf, int x, int y, int rad, int c)

 Declared in graphics.h.

 This function draws a filled circle onto the ViewBuffer buf at (x,y) with radius rad and colour c.

See Also:

 Graphics

 RGBFillCircle

•ViewBuffer *FolderIcn

 Declared in cursors.h.

 This is the icon for a folder (or directory). Used by the FileList class.

•struct FONT

 Declared in graphics.h.

 This structure holds the information for a bitmapped font.

See Also:

 LoadFont

 DeleteFont

 WriteChar

 WriteText

•void Frame (ViewBuffer *buf, int x1, int y1, int x2, int y2)

 Declared in system.h.

 This function draws a highlighted raised frame (for controls and windows).

See Also:

 FrameBox

 InvFrame

 InvFrameBox

•void FrameBox (ViewBuffer *buf, int x1, int y1, int x2, int y2, int w)

 Declared in system.h.

 This function draws a highlighted raised and filled frame (for controls and windows). The width of the frame is given by w, and the coords (x1,y1), (x2,y2) give the corners of the filled box inside the frame, not the corners of the frame.

See Also:

 Frame

 InvFrame

 InvFrameBox

•void FreeColour (int c)

 Declared in graphics.h.

 This function frees colour allocated by AllocColour.

See Also:

 AllocColour

•DWORD GetTicks ()

 Declared in eventque.h.

 Returns the system time in milliseconds (1/1000ths of a second).

•DWORD GetSBTicks ()

 Declared in sb.h.

 This function returns the number of SB interrupts that have occured since the interrupt was installed.

See Also:

 InitialiseSound

 DeInitialiseSound

•void HBump (ViewBuffer *buf, int x1, int x2, int y)

 Declared in system.h.

 This function draws a higlighted horizontal bump from x1 to x2 along y and y+1.

See Also:

 HDip

 VBump

 VDip

•void HDip (ViewBuffer *buf, int x1, int x2, int y)

 Declared in system.h.

 This function draws a higlighted horizontal dip from x1 to x2 along y and y+1.

See Also:

 HBump

 VBump

 VDip

•class HelpDataBase

 Declared in help.h.

 This class holds a help database from a help file.

 HelpDataBase (char *filename)

 ~HelpDataBase ()

 HelpTopic *GetTopic (char *name)

See Also:

 Help Files

 class HelpTopic

 class HelpWindow

•class HelpTopic

 Declared in help.h.

 This class holds a help topic for a help database.

 HelpTopic (FILE *fp)

 ~HelpTopic ()

 int GetLength ()

 char *GetText ()

 int isTopic (char *n)

 char *TopicName ()

 int GetHeight (int width)

See Also:

 Help Files

 class HelpDataBase

 class HelpWindow

•class HelpWindow

 Declared in help.h.

 This class is publicly derived from class ScrollingWindow. This is a window to view and navigate a help file.

 HelpWindow (Window *parent, HelpDataBase *hdb, const char *topic, int x1, int y1, int x2, int y2)

 ~HelpWindow ()

 void Setup ()

 protected:

 void PaintWindow (int,int,int,int)

 void LButtonDown (int,int,int)

 void SysBox ()

 void CmContents ()

 void CmLastTopic ()

 void Resize (int,int,int,int)

See Also:

 Help Files

 class HelpDataBase

 class HelpTopic

•HelpWindow::HelpWindow (Window *parent, HelpDataBase *hdb, const char *topic, int x1, int y1, int x2, int y2)

 The constructor for class HelpWindow. Creates a help window using the database hdb, and initially viewing topic. The window is created on the rectangle (x1,y1)-(x2,y2).

See Also:

 Help Files

 class HelpDataBase

 class HelpTopic

 class HelpWindow

•HelpWindow::~HelpWindow ()

 The destructor for class HelpWindow.

See Also:

 Help Files

 class HelpDataBase

 class HelpTopic

 class HelpWindow

•void HelpWindow::Setup ()

 This function sets the window up. Call instead of the usual Window::Paint () and Window::RefreshWindow ().

See Also:

 Help Files

 class HelpDataBase

 class HelpTopic

 class HelpWindow

•void HLine (ViewBuffer *buf, int x1, int x2, int y, int c)

 Declared in graphics.h.

 This function draws a horizontal line on ViewBuffer buf from (x1,y) to (x2,y) in colour c.

See Also:

 Graphics

 RGBHLine

•class HSlider

 Declared in slider.h.

 This class is publicly derived from class Slider. It is a horizontal slider control.

 HSlider (Window *parent,ControlID id,int x,int y,int l,int length,int position)

 protected:

 void PaintWindow (int,int,int,int)

 void MoveLeft ()

 void MoveRight ()

 void MouseMove (int,int,int,int)

 void LButtonDown (int,int,int)

 void LButtonUp (int,int,int)

 void StopTimer ()

 void Timer ()

 These are the event handling macros defined for the HSlider class:

 E_SLIDERLEFT (ID,function)

 E_SLIDERRIGHT (ID,function)

 E_SLIDERPAGELEFT (ID,function)

 E_SLIDERPAGERIGHT (ID,function)

See Also:

 class Slider

 class VSlider

•HSlider::HSlider (Window *parent,ControlID id,int x,int y,int l,int length,int position)

 The constructor for class HSlider. It creates a horizontal slider whose top left corner is at (x,y) and is l long.

 The length of the data that the slider refers to is given by length, and the initial position in that data is given by position. The slider is 16 pixels high.

See Also:

 class Slider

 class HSlider

 class VSlider

•class IconButton

 Declared in button.h.

 This class is publicly derived from class Button. It creates a button with an icon on it.

 IconButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2, ViewBuffer *icn)

 IconButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2, const BYTE *data, int w, int h, const BYTE *colours)

 ~IconButton ()

 void ChangeIcon (ViewBuffer *NewIcon)

 protected:

 void PaintWindow (int, int, int, int)

 These are the event handling macros defined for the IconButton class:

 E_BUTTONDOWN (ID,function)

 E_BUTTONUP (ID,function)

 E_DOUBLECLICK (ID,function)

See Also:

 class Button

 class TextButton

•IconButton::IconButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2, ViewBuffer *icn)

 IconButton::IconButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2, const BYTE *data, int w, int h, const BYTE *colours)

 The constructors for class IconButton.

 The first form creates a button on the rectangle (x1,y1)-(x2,y2) with the control id ID and the icon icn.

 The second form creates a button on the rectangle (x1,y1)-(x2,y2) with the control id ID and the icon generated from data and colours of width w and height h. The data is w*h bytes indexing colours from the colours array.

See Also:

 class Button

 class TextButton

 class IconButton

•IconButton::~IconButton ()

 The destructor for class IconButton.

See Also:

 class Button

 class TextButton

 class IconButton

•void IconButton::ChangeIcon (ViewBuffer *NewIcon)

 This function changes the icon on the button.

See Also:

 class Button

 class TextButton

 class IconButton

•int InitialiseSound (int type, int port, int dma_num, int hdma_num, int int_num)

 Declared in sb.h.

 This function initialises the sound card. This will setup a card at port address and with dma_num, hdma_num (for 16bit) and int_num (irq).

 The type can be:

 SOUND_BLASTER

 SOUND_BLASTER_PRO

 SOUND_BLASTER_16

 Or can be any value from 0 to 3:

 0 - mono 8bit sound

 1 - stereo 8bit sound

 2 - mono 16bit sound

 3 - stereo 16bit sound.

 Note that this does no auto-detection of port, dma or irq numbers, these must be right.

 This function does not start the mixer.

See Also:

 InitialiseSound

 DeInitialiseSound

 StartPlaying

 StopPlaying

•void InvFrame (ViewBuffer *buf, int x1, int y1, int x2, int y2)

 Declared in system.h.

 This function draws a highlighted sunk frame (for controls and windows).

See Also:

 Frame

 FrameBox

 InvFrameBox

•void InvFrameBox (ViewBuffer *buf, int x1, int y1, int x2, int y2,int w)

 Declared in system.h.

 This function draws a highlighted sunk and filled frame (for controls and windows). The width of the frame is given by w, and the coords (x1,y1), (x2,y2) give the corners of the filled box inside the frame, not the corners of the frame.

See Also:

 Frame

 FrameBox

 InvFrame

•void Line (ViewBuffer *buf, int x1, int y1, int x2, int y2, int c)

 Declared in graphics.h.

 This function draws a line from (x1,y1) to (x2,y2) in colour c on the buffer buf.

See Also:

 Graphics

 RGBLine

•ViewBuffer LoadBMP (FILE *fp)

 This function will load a 24bit colour windowsBMP file from the stream fp.

 The function will return NULL if the file is not 24bits or there is an error loading it. Otherwise a pointer to a new ViewBuffer will be returned.

See Also:

 LoadTGA

 SaveBMP

 SaveTGA

•FONT *LoadFont (char *name)

 Declared in graphics.h.

 This function loads the font named name. Returns NULL if there was an error.

See Also:

 Graphics

 LoadFont

 DeleteFont

 WriteChar

 WriteText

•ViewBuffer LoadTGA (FILE *fp)

 This function will load a 24bit colour Targa file from the stream fp.

 The function will return NULL if the file is not 24bits or there is an error loading it. Otherwise a pointer to a new ViewBuffer will be returned.

See Also:

 LoadBMP

 SaveBMP

 SaveTGA

•SOUND_SAMPLE *LoadWaveFile (const char *filename)

 Declared in sb.h.

 This function loads in the wave file filename into a sample.

See Also:

 InitialiseSound

 DeInitialiseSound

 DeleteSample

•Cursor MainCursor

 Declared in cursors.h.

 This is the main cursor.

•ViewBuffer *MaxBoxIcns[]

 Declared in cursors.h.

 These are the two max-box icons (arrow up and arrow down for the max box).

•class Menu

 Declared in menu.h.

 This class is publicly derived from class Window. This is a horizontal menu bar. This class is meant as a base class as you need to derive a class to handle the events. Use AutoMenu in preference.

 Menu (Window *parent, int NItems, int x, int y, int w)

 ~Menu ()

 void AddItem (const char *Text, ControlID ID)

 void Resize (int w, int h)

See Also:

 class AutoMenu

 class AutoPopupMenu

 class PopupMenu

 class MenuItem

•Menu::Menu (Window *parent, int NItems, int x, int y, int w)

 The constructor for class Menu. This creates a menu with a maximum of NItems at (x,y) and w long.

See Also:

 class Menu

 class PopupMenu

 class MenuItem

•Menu::~Menu ()

 The destructor for class Menu.

See Also:

 class Menu

 class PopupMenu

 class MenuItem

•void Menu::AddItem (const char *Text, ControlID ID)

 Adds an item to the menu with text Text and control id ID. The text can contain an '&' which will signify that the letter following this will be the accelerator key for the item.

See Also:

 class Menu

 class PopupMenu

 class MenuItem

•void Menu::Resize (int w, int h)

 Changes the size of the menu item. Used internally by the menu.

See Also:

 class Menu

 class PopupMenu

 class MenuItem

•class MenuItem

 Declared in menu.h.

 This class is publicly derived from class Window. This is an item on either a popup-menu or a menu. You should not have to use this yourself.

 MenuItem (Window *parent, ControlID ID, const char *Text, int x, int y)

 ~MenuItem ()

 void UnSelect ()

 virtual void Resize (int w,int h)

 void Select ()

 int GetMenuX ()

 int GetMenuY ()

 ControlID GetID ()

 protected:

 void PaintWindow (int x1, int y1, int x2, int y2)

 void MouseMove (int x, int y, int key_stat, int but_stat)

 void LButtonDown (int x, int y, int key_stat)

 void LButtonUp (int x, int y, int key_stat)

 void Focus ()

 void UnFocus ()

See Also:

 class MenuSeperator

•MenuItem::MenuItem (Window *parent, ControlID ID, const char *Text, int x, int y)

 The constructor for class MenuItem. Constructs a menu-item in window parent, with control id ID at x,y with text Text. Text can contain an 'hich signifies the character following is the ALT key accelerator.

See Also:

 class MenuItem

 class MenuSeperator

•MenuItem::~MenuItem ()

 The destructor for class MenuItem.

See Also:

 class MenuItem

 class MenuSeperator

•void MenuItem::UnSelect ()

 Unselects the menu-item.

See Also:

 class MenuItem

 class MenuSeperator

•virtual void MenuItem::Resize (int w,int h)

 Resizes the menu-item. Used internally by the menus.

See Also:

 class MenuItem

 class MenuSeperator

•void MenuItem::Select ()

 Selects the menu-item.

See Also:

 class MenuItem

 class MenuSeperator

•int MenuItem::GetMenuX ()

 Returns the x-coord for a popup-menu from an item.

See Also:

 class MenuItem

 class MenuSeperator

•int MenuItem::GetMenuY ()

 Returns the y-coord for a popup-menu from an item.

See Also:

 class MenuItem

 class MenuSeperator

•ControlID MenuItem::GetID ()

 Returns the control id for the menu-item.

See Also:

 class MenuItem

 class MenuSeperator

•struct MenuRes

 Declared in menu.h.

 This structure carries the information required by AutoMenu. Name is the name of the menu-item, nItems is the number of items in the popup-menu, and Menu is a pointer to an array of PopupMenuRes structures.

 char *Name

 int nItems

 PopupMenuRes *Menu

See Also:

 class AutoMenu

 class AutoPopupMenu

 struct PopupMenuRes

•class MenuSeperator

 Declared in menu.h.

 This class is publicly derived from class MenuItem. It creates a menu-item seperator (a horizontal dip) at (x,y) for popup-menus.

 MenuSeparator (Window *parent, int x, int y)

 void Resize (int w, int h)

 protected:

 void PaintWindow (int, int, int, int)

See Also:

 class MenuItem

•MenuSeperator::MenuSeparator (Window *parent, int x, int y)

 The constructor for class MenuSeperator. Creates a menu-seperator on the parent window at (x,y).

See Also:

 class MenuItem

 class MenuSeperator

•void MenuSeperator::Resize (int w, int h)

 Resizes the seperator. Used interally by the menus.

See Also:

 class MenuItem

 class MenuSeperator

•class MessageBox

 Declared in message.h.

 This class is publicly derived from class TabWin. It is a universal message dialog box, with selectable buttons.

 MessageBox (const char *text, const char *title=NULL, int buts=MB_OK)

 ~MessageBox ()

 int Run ()

 protected:

 BOOL DoEvents (const event *ev)

See Also:

 class TabWin

•MessageBox::MessageBox (const char *text, const char *title=NULL, int buts=MB_OK)

 The constructor for class MessageBox. This creates a message box displaying the message text. If title is NULL then no title is shown. The buttons displayed are given by buts.

 These are the values that buts can take:

 MB_OK An 'OK' button (the default).

 MB_CANCEL A 'Cancel' button.

 MB_YES A 'Yes' button.

 MB_NO A 'No' button.

 Any combination of these may be combined with '|'.

See Also:

 class MessageBox

•MessageBox::~MessageBox ()

 The destructor for class MessageBox.

See Also:

 class MessageBox

•int MessageBox::Run ()

 This function will run the dialog box. It returns with the button pressed (or 0 if closed without a cancel or no button).

 See the constructor MessageBox::MessageBox (...) for the return values.

See Also:

 class MessageBox

•ViewBuffer *NewBuffer (int width, int height)

 Declared in graphics.h.

 Creates a new buffer with dimensions width x height. The colour depth of the buffer is the same as the current colour depth of the display.

See Also:

 Graphics

 NewBuffer24

 DeleteBuffer

•ViewBuffer *NewBuffer24 (int width, int height)

 Declared in graphics.h.

 Creates a new buffer with dimensions width x height. The colour depth of the new buffer is alway 24bits.

See Also:

 Graphics

 NewBuffer24

 DeleteBuffer

•void Pixel (ViewBuffer *buf, int x, int y, int c)

 Declared in graphics.h.

 Draws a pixel at (x,y) on the buffer buf with colour c.

See Also:

 Graphics

 RGBPixel

•void PlaySample (SOUND_SAMPLE *sample)

 Declared in sb.h.

 This function starts the sample playing using the sample's default frequency etc.

See Also:

 InitialiseSound

 DeInitialiseSound

 PlaySampleF

 PlaySampleFV

 PlaySampleFVP

 QueueSample

•void PlaySampleF (SOUND_SAMPLE *sample, int frequency)

 Declared in sb.h.

 This function starts the sample playing at frequency using the sample's default volume etc.

 The frequency is in Hz.

See Also:

 InitialiseSound

 DeInitialiseSound

 PlaySample

 PlaySampleFV

 PlaySampleFVP

 QueueSample

•void PlaySampleFV (SOUND_SAMPLE *sample, int frequency, int volume)

 Declared in sb.h.

 This function starts the sample playing at frequency and volume.

 The frequency is in Hz, the volume is from 0 to 65536.

See Also:

 InitialiseSound

 DeInitialiseSound

 PlaySample

 PlaySampleF

 PlaySampleFVP

 QueueSample

•void PlaySampleFVP (SOUND_SAMPLE *sample, int frequency, int volume, int pan)

 Declared in sb.h.

 This function starts the sample playing at frequency, volume and pan.

 The frequency is in Hz, the volume is from 0 to 65536, and the pan is from 0 at right to 65536 at left.

See Also:

 InitialiseSound

 DeInitialiseSound

 PlaySample

 PlaySampleF

 PlaySampleFV

 QueueSample

•void PolyLine (ViewBuffer *buf, int n, int *x, int *y, int c)

 Declared in graphics.h.

 This function draws a poly-line onto ViewBuffer buf consisting of n points in the arrays x[] and y[]. The last point is joined to the first and drawing is in colour c.

See Also:

 Graphics

 RGBPolyLine

•void Polygon (ViewBuffer *buf, int npts, int *x, int *y, int c)

 Declared in graphics.h.

 This function will fill a polygon onto the buffer buf. The polygon is given by npts points in the arrays x[] and y[] and is drawn in colour c.

See Also:

 Graphics

 RGBPolygon

•class PopupMenu

 Declared in menu.h.

 This class is publicly derived from class Menu. It creates a popup menu.

 PopupMenu (Window *parent, int NItems, int x, int y)

 void AddItem (const char *Text, ControlID ID)

 void AddSeparator ()

See Also:

 class Menu

 class AutoMenu

 class AutoPopupMenu

•PopupMenu::PopupMenu (Window *parent, int NItems, int x, int y)

 The constructor for class PopupMenu. Constructs a popup-menu with a maximum of NItems items at position (x,y).

See Also:

 PopupMenu

•void PopupMenu::AddItem (const char *Text, ControlID ID)

 Add an item to the popup-menu. The item has the text Text and the control id ID.

See Also:

 class PopupMenu

•void PopupMenu::AddSeparator ()

 Adds a seperator to the popup-menu.

See Also:

 class PopupMenu

•struct PopupMenuRes

 Declared in menu.h.

 This structure carries information used by class AutoPopupMenu. Text is a pointer to the text for the item, and ID is the control id for the item.

 If the item has a popout menu associated with it then npopout gives the number of items in the popout menu and popout points to the PopupMenuRes structures for the popout menu. Otherwise leave these zero.

 char *Text

 ControlID ID

 int npopout

 PopupMenuRes *popout;

See Also:

 class AutoPopupMenu

•class ProgressIndicator

 Declared in progress.h.

 This class is publicly derived from class Window. It is a progress indicator.

 ProgressIndicator (Window *parent, int x1, int y1, int x2, int y2)

 ~ProgressIndicator ()

 void SetProgress (double prog)

 protected:

 void PaintWindow (int, int, int, int)

•ProgressIndicator::ProgressIndicator (Window *parent, int x1, int y1, int x2, int y2)

 This is the constructor for class ProgressIndicator. It constructs a progress indicator on the rectangle (x1,y1),(x2,y2) of parent.

See Also:

 class ProgressIndicator

•ProgressIndicator::~ProgressIndicator ()

 This is the destructor for class ProgressIndicator.

See Also:

 class ProgressIndicator

•void ProgressIndicator::SetProgress (double prog)

 This function sets the progress to prog. The value can range from 0.0-1.0 (where 0.0 is no progress and 1.0 is complete).

See Also:

 class ProgressIndicator

•void QueueSample (SOUND_SAMPLE *sample, int frequency, int volume, int pan, int delay)

 Declared in sb.h.

 This function queues the sample to play at frequency, volume and pan after delay in microseconds.

 The frequency is in Hz, the volume is from 0 to 65536, and the pan is from 0 at right to 65536 at left.

See Also:

 InitialiseSound

 DeInitialiseSound

 PlaySample

 PlaySampleF

 PlaySampleFV

 PlaySampleFVP

•class RadioButton

 Declared in radio.h.

 This class is publicly derived from class Window. It is a radio button which allows the selection over several choices. It is used by RadioButtonContainer and should not be used alone.

 RadioButton (Window *parent, int y, int len, ControlID ID, char *text)

 ~RadioButton ()

 void Select ()

 void SelectWithoutFocus ()

 void DeSelect ()

 ControlID GetControlID ()

 int IsSelected ()

 protected:

 void PaintWindow (int, int, int, int)

 void Focus ()

 void UnFocus ()

 void LButtonDown (int, int, int)

See Also:

 RadioButtonContainer

•RadioButton::RadioButton (Window *parent, int y, int len, ControlID ID, char *text)

 This is the constructor for class RadioButton. It constructs a radio button control in parent with ControlID ID and text (which can contain '&' which signifies the next character is the Alt key accelerator for the control).

See Also:

 class RadioButton

 class RadioButtonContainer

•RadioButton::~RadioButton ()

 The destructor for class RadioButton.

See Also:

 class RadioButton

 class RadioButtonContainer

•void RadioButton::Select ()

 This function is for the keyboard accelerator. It will select the radio button.

See Also:

 class RadioButton

 class RadioButtonContainer

•void RadioButton::SelectWithoutFocus ()

 This function will select the radio button without bring focus to the radio button and it's container. For the initial setting.

See Also:

 class RadioButton

 class RadioButtonContainer

•void RadioButton::DeSelect ()

 This function de-selectsthe radio button.

See Also:

 class RadioButton

 class RadioButtonContainer

•ControlID RadioButton::GetControlID ()

 Returns the ControlID of the radio button.

See Also:

 class RadioButton

 class RadioButtonContainer

•int RadioButton::IsSelected ()

 Returns TRUE if the radio button is selected.

See Also:

 class RadioButton

 class RadioButtonContainer

•class RadioButtonContainer

 Declared in radio.h.

 This class is publicly derived from class Window. It is a rectangular container for radio buttons. From it you can add buttons to the list.

 RadioButtonContainer (Window *parent, int x1, int y1, int x2, int y2)

 ~RadioButtonContainer ()

 void AddButton (char *text, ControlID ID)

 void SelectButton (ControlID ID)

 ControlID GetSelectedButton ()

 protected:

 void Focus ()

 void UnFocus ()

See Also:

 class RadioButton

•RadioButtonContainer::RadioButtonContainer (Window *parent, int x1, int y1, int x2, int y2)

 This is the constructor for class RadioButtonContainer. This constructs a container in the rectangle (x1,y1),(x2,y2) on parent.

See Also:

 class RadioButton

 class RadioButtonContainer

•RadioButtonContainer::~RadioButtonContainer ()

 This is the destructor for class RadioButtonContainer.

See Also:

 class RadioButton

 class RadioButtonContainer

•void RadioButtonContainer::AddButton (char *text, ControlID ID)

 This function adds a radio button into the container. This button will go below any previous buttons.

 The button has the ControlID ID and text (which can contain '&' which signifies the next character is the Alt key accelerator for the control).

See Also:

 class RadioButton

 class RadioButtonContainer

•void RadioButtonContainer::SelectButton (ControlID ID)

 This function selects the radio button with ControlID ID.

See Also:

 class RadioButton

 class RadioButtonContainer

•ControlID RadioButtonContainer::GetSelectedButton ()

 This function returns the ControlID of the selected radio button.

See Also:

 class RadioButton

 class RadioButtonContainer

•void Rect (ViewBuffer *buf, int x1, int y1, int x2, int y2, int c)

 Declared in graphics.h.

 Draws a rectangle with top-left corner (x1,y1) and bottom-right corner (x2,y2) on the buffer buf with colour c.

See Also:

 Graphics

 RGBRect

•class ResourceManager

 Declared in resource.h.

 This class handles resource files. This class provides all the functionality for dealing with resource loading. Resources are blocks of data with an attached name that exist in a resource file.

 You can create multiple instances of this class and they will be self contained, but one instance can handle up to ten resource files.

 ResourceManager ()

 ~ResourceManager ()

 int RegisterResourceFile (char *filename)

 // Registers a resource file,returns FALSE on error.

 int RemoveResourceFile (char *filename)

 // Removes a resource file,returns FALSE on error.

 BYTE *GetResource (char *name)

 // Gets the named resource.

 int GetResourceNumber (char *name)

 // Returns the number of the given resource.

 char *GetResourceFile (char *name)

 // Returns the resource file that name is from.

 int GetNumberOfResources (char *resfilename)

 // Gets the number of entries in the table.

 char *GetResourceName (char *resfilename, int n)

 // Returns the name of the nth resource in resfilename.

 int GetResourceLength (char *resfilename, int n)

 // Gets the actual length of the resource.

 int GetCompressedResourceLength (char *resfilename, int n)

 // Gets the length of the compressed resource.

•ResourceManager::ResourceManager ()

 This is the constructor for class ResourceManager.

See Also:

 class ResourceManager

•ResourceManager::~ResourceManager ()

 This is the destructor for class ResourceManager.

See Also:

 class ResourceManager

•int ResourceManager::RegisterResourceFile (char *filename)

 This function registers the resource file filename with the resource manager. The return value is FLASE on error, otherwise TRUE.

See Also:

 class ResourceManager

•int ResourceManager::RemoveResourceFile (char *filename)

 This function removes a resource file that has been previously registered. The return value is FALSE on error, otherwise TRUE.

See Also:

 class ResourceManager

•BYTE *ResourceManager::GetResource (char *name)

 This function retrieves a resource block. The data associated with the resource name is returned or NULL if there was an error.

See Also:

 class ResourceManager

•int ResourceManager::GetResourceNumber (char *name)

 This function is not normally needed, but is useful for getting the length of a resource from it's name. It returns a number that identifies the position of the resource in it's resource file.

See Also:

 class ResourceManager

 ResourceManager::GetResourceLength

 ResourceManager::GetCompressedResourceLength

•char *GetResourceFile (char *name)

 This function is not normally needed but is useful for getting the length of a resource from it's name. It returns the name of the resource file that name is from.

See Also:

 class ResourceManager

 ResourceManager::GetResourceLength

 ResourceManager::GetCompressedResourceLength

•int ResourceManager::GetNumberOfResources (char *resfilename)

 Gets the total number of resources in the resource file resfilename.

See Also:

 class ResourceManager

•char *ResourceManager::GetResourceName (char *resfilename, int n)

 This function returns the name of the nth resource in the resource file resfilename. This is useful to step through every single resource in a file.

See Also:

 class ResourceManager

 ResourceManager::GetResourceLength

 ResourceManager::GetCompressedResourceLength

•int ResourceManager::GetResourceLength (char *resfilename, int n)

 This function returns the length of the nth resource in the resource file resfilename. This is useful to step through every single resource in a file.

See Also:

 class ResourceManager

 ResourceManager::GetResourceName

 ResourceManager::GetCompressedResourceLength

•int ResourceManager::GetCompressedResourceLength (char *resfilename, int n)

 This function returns the actuall space taken up by the nth resource in the resource file resfilename. This is useful to step through every single resource in a file.

See Also:

 class ResourceManager

 ResourceManager::GetResourceName

 ResourceManager::GetResourceLength

•void RGBBox (ViewBuffer *buf, int x1, int y1, int x2, int y2, int r, int g, int b)

 Declared in graphics.h.

 Draws a filled box with top-left corner (x1,y1) and bottom-right corner (x2,y2) on the buffer buf with the colour (r,g,b).

See Also:

 Graphics

 Box

•void RGBCircle (ViewBuffer *buf, int x, int y, int rad, int r, int g, int b)

 Declared in graphics.h.

 This function draws a circle onto the ViewBuffer buf at (x,y) with radius rad and colour r,g,b.

See Also:

 Graphics

 Circle

•void RGBFillCircle (ViewBuffer *buf, int x, int y, int rad, int r, int g, int b)

 Declared in graphics.h.

 This function draws a filled circle onto the ViewBuffer buf at (x,y) with radius rad and colour r,g,b.

See Also:

 Graphics

 FillCircle

•void RGBHLine (ViewBuffer *buf, int x1, int x2, int y, int r, int g, int b)

 Declared in graphics.h.

 This function draws a horizontal line onto ViewBuffer buf from (x1,y) to (x2,y) in colour r,g,b.

See Also:

 Graphics

 HLine

•void RGBLine (ViewBuffer *buf, int x1, int y1, int x2, int y2, int r, int g, int b)

 Declared in graphics.h.

 Draws a line from (x1,y1) to (x2,y2) on the buffer buf with the colour (r,g,b).

See Also:

 Graphics

 Line

•void RGBPixel (ViewBuffer *buf, int x, int y, int r, int g, int b)

 Declared in graphics.h.

 Draws a pixel at (x,y) on the buffer buf with the colour (r,g,b).

See Also:

 Graphics

 Pixel

•void RGBPolyLine (ViewBuffer *buf, int n, int *x, int *y, int r, int g, int b)

 Declared in graphics.h.

 This function draws a poly-line onto ViewBuffer buf consisting of n points in the arrays x[] and y[]. The last point is joined to the first and drawing is in colour r,g,b.

See Also:

 Graphics

 PolyLine

•void RGBPolygon (ViewBuffer *buf, int npts, int *x, int *y, int r, int g, int b)

 Declared in graphics.h.

 This function draws a filled polygon onto ViewBuffer buf consisting of n points in the arrays x[] and y[]. The last point is joined to the first and drawing is in colour r,g,b.

See Also:

 Graphics

 Polygon

•void RGBRect (ViewBuffer *buf, int x1, int y1, int x2, int y2, int r, int g, int b)

 Declared in graphics.h.

 Draws a rectangle with top-left corner (x1,y1) and bottom-right corner (x2,y2) on the buffer buf with colour (r,g,b).

See Also:

 Graphics

 Rect

•void RGBVLine (ViewBuffer *buf, int x, int y1, int y2, int r, int g, int b)

 Declared in graphics.h.

 This function draws a vertical line onto ViewBuffer buf from (x,y1) to (x,y2) in colour r,g,b.

See Also:

 Graphics

 VLine

•int SaveTGA (ViewBuffer *buf, FILE *fp)

 This function will save the image in the buffer buf to the stream fp as a 24bit Targa file.

 The function will return FALSE if there is an error or the buffer is not a 24bit buffer. Otherwise it will return TRUE.

See Also:

 LoadTGA

 LoadBMP

 SaveBMP

•int SaveBMP (ViewBuffer *buf, FILE *fp)

 This function will save the image in the buffer buf to the stream fp as a 24bit Windows Bitmap file.

 The function will return FALSE if there is an error or the buffer is not a 24bit buffer. Otherwise it will return TRUE.

See Also:

 LoadTGA

 LoadBMP

 SaveTGA

•void ScreenBox (int x1, int y1, int x2, int y2, int col)

 Declared in graphics.h.

 Draws a filled box with top-left corner (x1,y1) and bottom-right corner (x2,y2) directly to the screen with colour col. Adding XOR_WRITE to the colour will cause the drawing to be done in xor mode.

See Also:

 Graphics

 Box

 RGBBox

•void ScreenRectangle (int x1, int y1, int x2, int y2, int col)

 Declared in graphics.h.

 Draws a rectangle with top-left corner (x1,y1) and bottom-right corner (x2,y2) directly to the screen with colour col. Adding XOR_WRITE to the colour will cause the drawing to be done in xor mode.

See Also:

 Graphics

 Rect

 RGBRect

•void ScreenRGBPixel (int x, int y, int r, int g, int b)

 Declared in graphics.h.

 Draws a pixel at (x,y) directly to the screen with colour (r,g,b).

See Also:

 Graphics

 Pixel

 RGBPixel

•class ScrollingWindow

 Declared in scrolwin.h.

 This class is publicly derived from class Window. It is a window that has a virtual area that is as big as or bigger than the window itself. If the virtual area is bigger than the window then class creates sliders.

 ScrollingWindow (Window *parent, const char *title, int x1, int y1, int x2, int y2, int style)

 ~ScrollingWindow ()

 void ChangeSize (int w, int h)

 protected:

 void ScrollUp ()

 void ScrollDown ()

 void ScrollLeft ()

 void ScrollRight ()

 void PageUp ()

 void PageDown ()

 void PageLeft ()

 void PageRight ()

 void VSliderMove (int)

 void HSliderMove (int)

 void MoveVertical (int)

 void MoveHorizontal (int)

 There are four useful variables in the class:

 int vh,vw,xo,yo

 These refer to the virtual areas height, the virtual areas width, the windows origin x-position on the virtual area, and the windows origin y-position on the virtual area.

See Also:

 class Window

•ScrollingWindow::ScrollingWindow (Window *parent, const char *title, int x1, int y1, int x2, int y2, int style)

 The constructor for class ScrollingWindow. Creates a scrolling window on the rextangle (x1,y1)-(x2,y2) on the parent window with style attributes.

See Also:

 class ScrollingWindow

•ScrollingWindow::~ScrollingWindow ()

 The destructor for class ScrollingWindow.

See Also:

 class ScrollingWindow

•void ScrollingWindow::ChangeSize (int w, int h)

 Changes the size of the virtual area to w x h (or the size of the window if w x h is smaller than this).

See Also:

 class ScrollingWindow

•void Set8BitColour (int n, int r, int g, int b)

 Declared in graphics.h.

 Sets a palette register in when the display is in an 8bit mode. Don't use this or the 24bit simulation will not work. (you can use number 240-255 though as these are ignored and assumed to be black).

See Also:

 Graphics

•void SetCompressionMode (int mode)

 Declared in compress.h

 This function sets the compression mode to be used. The valid values of mode are:

 SUPER_FAST_COMPRESSION_MODE

 The fastest mode.

 FAST_COMPRESSION_MODE

 Fast but good compression.

 NORMAL_COMPRESSION_MODE

 The default compression mode, good compression.

 MAXIMUM_COMPRESSION_MODE

 The maximum compression mode, best compression, but at least 2 times as long as normal compression.

 This function only effects the compression. All modes decompression in the same way (and speed).

See Also:

 CompressMemory

 DecompressMemory

•void SetMousePosition (int x, int y)

 Declared in eventque.h.

 Sets the position of the mouse to (x,y).

See Also:

 SetMouseSpeed

•void SetMouseSpeed (int speedx, int speedy)

 Declared in eventque.h.

 Sets the speed of the mouse. The higher the number (speedx or speedy) the slower the speed in that axis.

See Also:

 SetMousePosition

•void SetSampleRate (int rate)

 Declared in sb.h.

 This function sets the mixing rate to rate in Hz.

See Also:

 InitialiseSound

 DeInitialiseSound

•void SetupFileListDrivesDirectories()

 Declared in filedlg.h.

 Called internally when the window system is initialised to setup structures required by the FileList.

•class Slider

 Declared in slider.h.

 This class is publicly derived from class Window. It has all the common functionality for vertical and horizontal sliders.

 Slider (Window *parent, ControlID id, int x, int y, int w, int h, int length, int position)

 virtual void ChangePos (int newpos)

 virtual void Update (int newpos, int newlen)

See Also:

 class HSlider

 class VSlider

•Slider::Slider (Window *parent, ControlID id, int x, int y, int w, int h, int length, int position)

 The constructor for class Slider.

See Also:

 class Slider

•virtual void Slider::ChangePos (int newpos)

 Changes the position of the slider to newpos.

See Also:

 class Slider

•virtual void Slider::Update (int newpos, int newlen)

 Changes the position of the slider to newpos and the length over which it slides to newlen.

See Also:

 class Slider

•struct SOUND_SAMPLE

 Declared in sb.h.

 This structure hold the data for a sound sample.

 int type

 char *sample.b

 short *sample.w

 int frequency

 int length

 int volume

 int pan

 The sample.b and sample.w both point to the raw sample data of length samples long. The frequency, volume and pan are the samples default (natural) values.

See Also:

 InitialiseSound

 DeInitialiseSound

 PlaySample

•void StartPlaying ()

 Declared in sb.h.

 This function starts mixing (installs the SB interrupt and handler).

See Also:

 InitialiseSound

 DeInitialiseSound

 StopPlaying

•class StaticText

 Declared in static.h.

 This class is publicly derived from class Window. It is a window that contains a single line of text in it.

 StaticText (Window *parent, const char *text, int x, int y, int l)

 ~StaticText ()

 void SetText (const char *text)

 char *GetText ()

 protected:

 void PaintWindow (int x1, int y1, int x2, int y2)

•StaticText::StaticText (Window *parent, const char *text, int x, int y, int l)

 The constructor for class StaticText. creates a static text control on the parent window at (x,y) with length l (pixels) displaying text.

See Also:

 class StaticText

•StaticText::~StaticText ()

 The destructor for class StaticText.

See Also:

 class StaticText

•void StaticText::SetText (const char *text)

 Changes the text displayed by the control to text.

See Also:

 class StaticText

•char *StaticText::GetText ()

 Returns a pointer to the string being displayed by the control.

See Also:

 class StaticText

•void StopAllSamples ()

 Declared in sb.h.

 This function removes all playing and queued samples.

See Also:

 InitialiseSound

 DeInitialiseSound

 StopSample

•void StopPlaying ()

 Declared in sb.h.

 This function stops mixing (removes the SB interrupt and handler).

See Also:

 InitialiseSound

 DeInitialiseSound

 StartPlaying

•void StopSample (SOUND_SAMPLE *sample)

 Declared in sb.h.

 This function removes all playing copies of sample.

See Also:

 InitialiseSound

 DeInitialiseSound

 StopAllSamples

•ViewBuffer *SubBuffer (ViewBuffer *buf, int x1, int y1, int x2, int y2)

 Declared in graphics.h.

 Returns a ViewBuffer that maps to the rectangle with corners (x1,y1),(x2,y2) on the ViewBuffer buf.

See Also:

 Graphics

 NewBuffer

 DeleteBuffer

•ViewBuffer *SysBoxIcn

 Declared in cursors.h

 This is the icon for the system box on windows.

•FONT *SysFont

 FONT *SysFontBold

 FONT *SysFontBoldItallic

 FONT *SysFontItallic

 Declared in system.h.

 These are the four system fonts that are automatically loaded when the window system is initialised.

•class TabWin

 Declared in tabwin.h.

 This class is publicly derived from class Window. It adds the ability to set tabstops on controls that can then be changed between using the tab key.

 TabWin (Window *parent, const char *title, int x1, int y1, int x2, int y2, int style)

 ~TabWin ()

 void SetFocus (Window *wnd)

 protected:

 void AddTabStop (Window *wnd)

See Also:

 class Window

•TabWin::TabWin (Window *parent, const char *title, int x1, int y1, int x2, int y2, int style)

 The constructor for class TabWin. See Window::Window (...) for information.

See Also:

 class TabWin

 class Window

•TabWin::~TabWin ()

 The destructor for class TabWin.

See Also:

 class TabWin

 class Window

•void TabWin::SetFocus (Window *wnd)

 Overides the function Window::SetFocus ().

See Also:

 class TabWin

 class Window

•

 void TabWin::AddTabStop (Window *wnd)

 Adds a tab-stop to the list for the window. Should be a child of the window.

See Also:

 class TabWin

 class Window

•class TextButton

 Declared in button.h.

 This class is publicly derived from class BasicButton. This creates a button with text on it.

 TextButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2, const char *text)

 ~TextButton ()

 protected:

 void PaintWindow (int x1, int y1, int x2, int y2)

See Also:

 class BasicButton

 class IconButton

•TextButton::TextButton (Window *parent, ControlID ID, int x1, int y1, int x2, int y2, const char *text)

 The constructor for class TextButton. Creates a button on the rectangle with corners (x1,y1) and (x2,y2) displaying text.

 The character '&' can be used before a letter in the text to make it the Alt key accelerator (ie Alt+char will activate the button).

See Also:

 class BasicButton

 class TextButton

 class IconButton

•TextButton::~TextButton ()

 The destructor for class TextButton.

See Also:

 class BasicButton

 class TextButton

 class IconButton

•void VBump (ViewBuffer *buf, int x, int y1, int y2)

 Declared in system.h.

 This function draws a higlighted vertical bump from y1 to y2 along x and x+1.

See Also:

 HBump

 HDip

 VDip

•void VDip (ViewBuffer *buf, int x, int y1, int y2)

 Declared in system.h.

 This function draws a higlighted vertical dip from y1 to y2 along x and x+1.

See Also:

 HBump

 HDip

 VBump

•int VESASetMode (int mode)

 Declared in video.h.

 This sets up a SVGA video mode using the VESA interface. Should not be used unless using the graphics library seperately.

•void VESASetPage (int page)

 Declared in video.h.

 Sets the current video page using VESA services. Do not use. This is used only internally to the graphics library and is documented in case you want to write your own direct to screen routines.

•VIDEO_DATA VideoData

 Declared in video.h.

 This global holds all the info about the current video mode. This info should not be obtained directly from here as this structure may change in the future. Most of the info is accessable from ws.

•struct VIDEO_DATA

 Declared in video.h.

 WORD mode

 WORD scan_length

 WORD width

 WORD height

 WORD aspect

 WORD col_depth

 Contains information about the current mode. The length in bytes of each line is given by scan_length and width, height give the dimensions of the current mode. The member aspect can be ignored, and col_depth is either 8,15 or 24 bits.

•struct ViewBuffer

 Declared in graphics.h.

 int colour_depth

 int width

 int height

 int scan_length

 int aspect

 void *base

 WORD *dummy

 Contains all the information regarding a memory buffer for graphics. This is the surface that almost all te graphics functions draw to.

 Do not modify any values as consistency is assumed internally.

•void VLine (ViewBuffer *buf, int x, int y1, int y2, int c)

 Declared in graphics.h.

 This function draws a vertical line on the ViewBuffer buf from (x,y1) to (x,y2) in colour c.

See Also:

 Graphics

 RGBVLine

•class VSlider

 Declared in slider.h.

 This class is publicly derived from class Slider. It is a vertical slider control.

 VSlider (Window *parent,ControlID id,int x,int y,int l,int length,int position)

 protected:

 void PaintWindow (int,int,int,int)

 void MoveUp ()

 void MoveDown ()

 void MouseMove (int,int,int,int)

 void LButtonDown (int,int,int)

 void LButtonUp (int,int,int)

 void StopTimer ()

 void Timer ()

 These are the event handling macros defined for the VSlider class:

 E_SLIDERUP (ID,function)

 E_SLIDERDOWN (ID,function)

 E_SLIDERPAGEUP (ID,function)

 E_SLIDERPAGEDOWN (ID,function)

See Also:

 class Slider

 class HSlider

•VSlider::VSlider (Window *parent,ControlID id,int x,int y,int l,int length,int position)

 The constructor for class VSlider. It creates a virtical slider whose top left corner is at (x,y) and is l pixels tall.

 The length of the data that the slider refers to is given by length, and the initial position in that data is given by position. The slider is 16 pixels wide.

See Also:

 class Slider

 class HSlider

 class VSlider

•class Window

 Declared in window.h.

 This class supplies all the base functionality for a window and also the distribution of events.

 Window (Window *Parent, const char *Title, int X1, int Y1, int X2, int Y2, int style)

 virtual ~Window ()

 void RefreshWindow (Window *exclude)

 void Paint ()

 virtual BOOL ProcessEvent (const event *ev)

 ViewBuffer *GetBuffer ()

 ViewBuffer *GetClientBuffer ()

 ViewBuffer *GetSubBuffer (int x1, int y1, int x2, int y2)

 void SetTitle (const char *NewTitle)

 virtual void Select ()

 void AddAccelerator (BYTE c, Window *wnd)

 void AddAccelerator (BYTE k, BYTE s, Window *wnd);

 void RemoveAccelerators (Window *wnd)

 int GetHeight ()

 int GetWidth ()

 Window *GetNext ()

 void SetNext (Window *wnd)

 virtual void SetFocus (Window *wnd)

 void SetTabStop ()

 int isFocus ()

 int isDocument ()

 void ShiftX (int d)

 void ShiftY (int d)

 void SetBackgroundColour (int c)

 int GetBackgroundColour ()

 protected:

 virtual void PaintWindow (int x1, int y1, int x2, int y2)

 void RefreshWindow (int x1, int y1, int x2, int y2, Window *exclude)

 void RefreshWindowIntoBuffer (ViewBuffer *buf, int x, int y, Window *exclude)

 virtual BOOL DoEvents (const event *ev)

 BOOL isIn (const event *ev)

 void SaveArea ()

 void RestoreArea ()

 virtual void Move (int dx,int dy)

 virtual void Resize (int x1,int y1,int x2,int y2)

 void SetClientArea (int x1,int y1,int x2,int y2)

 void CatchMouse ()

 void CatchAllMouseEvents ()

 void ReleaseMouse ()

 void CatchKeys ()

 void ReleaseKeys ()

 Window *GetParent ()

 virtual void AddChild (Window *wnd)

 virtual void DeleteChild (Window *wnd)

 virtual void Focus ()

 virtual void UnFocus ()

 void AddABSCorner (int x, int y)

 int x1,y1,x2,y2

 The coorinates of the window on it's parent.

 int w,h

 The width and height of the window.

 int cx1,cy1,cx2,cy2

 The client rectangle for clipping client windows by. Do not change directly.

 int absx,absy

 The absolute x and y coords of the top-left corner on the screen.

 int minw,minh

 The minimum width and height that the window can be resized to.

 ViewBuffer *wnd

 The surface of the window.

 ViewBuffer *und

 Used to save what is under the window.

 DWORD style

 The style of the window. See Window style constants.

 Window *parent

 The parent window.

 Window *next

 The next sibling.

 Window *children

 The list of children.

 Window *focus

 The current focused child (or NULL if no foucus).

 BOOL isMoving

 Flags if the window is being moved.

 BOOL isMaximized

 Flags if the window is maximised.

 int isSetup

 Flags various stages of initialisation to allow clean exiting on error.

 BOOL isTabStop

 Flags if window is allowed to be a tab-stop.

 BOOL isCatchAllMouse

 Flags if the window is catching all mouse events.

 BOOL isAlreadyMouseFocus

 Stores the MouseFocuse flag while isCatchAllMouse is TRUE.

 BOOL MouseFocus

 Flags if the window is catching the mouse events.

 BOOL CanHaveFocus

 Flags if the window can recieve focus.

 BOOL wasInside

 Flags if the mouse was inside.

 BOOL isDoc

 Flags if the window is a document window.

 int isSizing

 Flags various modes of sizing the window.

 int sx1,sy1,sx2,sy2,dx,dy

 Data for use during sizing and moving.

 char *Title

 The windows title.

 Accelerator *AccelTable

 Any Alt-key accelerators.

 IconButton *MaxBox,*SysBox

 The Maximize Box and System Box buttons.

•Window::Window (Window *Parent, const char *Title, int X1, int Y1, int X2, int Y2, int style)

 The constructor for class Window. This creates a window on the rectangle with corners (X1,Y1),(X2,Y2) relative to the parent window.

 The style can be left out and will default to WA_CLIENT | WA_VISABLE | WA_BORDER. See Window style constants for the style constants.

 Title if the text to be displyed in the title bar. This can be NULL.

See Also:

 class Window

•virtual Window::~Window ()

 The destructor for class Window.

See Also:

 class Window

•void Window::RefreshWindow (Window *exclude)

 This will refresh the window onto the screen excluding the child window exclude. The default value for exclude is NULL which will not exclude any child window.

See Also:

 Window::RefreshWindow

 class Window

•void Window::Paint ()

 This function paints the whole window (including all children). Painting will leave the windows buffer up to date, but requires refreshing to get it to screen.

See Also:

 class Window

•virtual BOOL Window::ProcessEvent (const event *ev)

 This function processes events being sent to the window and decides whether they are for the window or whether to send them on to the children.

 This should not be overridden.

See Also:

 Window::DoEvents

 class Window

•ViewBuffer *Window::GetBuffer ()

 This will return a pointer to the ViewBuffer for the surface of the window.

See Also:

 class Window

•ViewBuffer *Window::GetClientBuffer ()

 This allocates and returns a new buffer that describes the client area on the surface of the window. This must be freed using DeleteBuffer.

See Also:

 class Window

•ViewBuffer *Window::GetSubBuffer (int x1, int y1, int x2, int y2)

 This allocates and returns a new buffer that describes the rectangle (x1,y1)-(x2,y2) on the surface of the window. This must be freed using DeleteBuffer.

See Also:

 class Window

•void Window::SetTitle (const char *NewTitle)

 This function sets the title to NewTitle.

See Also:

 class Window

•virtual void Window::Select ()

 Selects the window. The base effect of this is nothing, but this is the function that is called by the alt-key accelerators.

See Also:

 class Window

•void Window::AddAccelerator (BYTE c, Window *wnd)

 void Window::AddAccelerator (BYTE k, BYTE s, Window *wnd);

 Adds and accelerator for Alt+'key c' or for keycode k and scancode s. This will mean that Window::Select is called every time the key combination is pressed.

See Also:

 class Window

•void Window::RemoveAccelerators (Window *wnd)

 This will remove all the accelerators that have been setup for the window.

See Also:

 class Window

•int Window::GetHeight ()

 Returns the height of the window.

See Also:

 Window::GetWidth

 class Window

•int Window::GetWidth ()

 Returns the width of the window.

See Also:

 Window::GetWidth

 class Window

•Window *Window::GetNext ()

 Returns the next sibling window.

See Also:

 Window::SetNext

 class Window

•void Window::SetNext (Window *wnd)

 Sets the window's next sibling to wnd.

See Also:

 Window::GetNext

 class Window

•virtual void Window::SetFocus (Window *wnd)

 Sets the focus on the child window wnd. If wnd==NULL then no child has focus.

See Also:

 Window::isFocus

 class Window

•void Window::SetTabStop ()

 Sets the flag to allow the window to be a tab-stop.

See Also:

 class Window

•int Window::isFocus ()

 Returns TRUE if the window has the focus.

See Also:

 class Window

•int Window::isDocument ()

 Returns TRUE if the window is a document window. This allows simple document handling.

See Also:

 WinSystem::GetTopDocument

 class Window

•void Window::ShiftX (int d)

 Shifts the window by d pixels in the X direction without redrawing.

See Also:

 Window::ShiftY

 class Window

•void Window::ShiftY (int d)

 Shifts the window by d pixels in the Y direction without redrawing.

See Also:

 Window::ShiftX

 class Window

•void Window::SetBackgroundColour (int c)

 This functions sets the background colour of the window to c.

See Also:

 Window::GetBackgroundColour

•int Window::GetBackgroundColour ()

 This function returns the current background colour of the window.

See Also:

 Window::SetBackgroundColour

•virtual void Window::PaintWindow (int x1, int y1, int x2, int y2)

 This function does all the drawing of the window. It will paint the rectangle with corners (x1,y1),(x2,y2) on the window's surface.

 Note that the coordinates may not be on the surface of the window, so should be clipped to the windows extent before use.

 This function should be overridden to allow a derived class to paint itself. In most cases you should call the PaintWindow in the class you derived from before any special painting is done.

See Also:

 Window::Paint

 class Window

•void Window::RefreshWindow (int x1, int y1, int x2, int y2, Window *exclude)

 This function refreshes the rectangle (x1,y1),(x2,y2) onto the screen, optionally excluding a child window. It basicly copies the window's buffer onto the screen.

 If the window is not on top then this function should not be called. I will be adding the ability to refresh windows behind others later, but this should be avoided right now.

See Also:

 Window::RefreshWindow

 Window::RefreshWindowIntoBuffer

 class Window

•void Window::RefreshWindowIntoBuffer (ViewBuffer *buf, int x, int y, Window *exclude)

 This function refreshes the whole window into the buffer buf optionally excluding a child window if exclude!=NULL.

See Also:

 Window::RefreshWindow

 Window::RefreshWindow

 class Window

•virtual BOOL Window::DoEvents (const event *ev)

 The main event handling function for the window. This function will get called with every event possibly meant for the window.

 You must override this to handle an event in the derived class. ALLWAYS call the DoEvents in the class that you derive from otherwise it will not get to handle the events.

 This returns TRUE if the event was handled, otherwise FALSE.

 A better way of handling events is to use the event macros which will automatically handle calling the base class etc.

See Also:

 Event macros

 Window::ProcessEvents

 class Window

•BOOL isIn (const event *ev)

 This function returns TRUE if the event ev is inside the window. This is used internally.

See Also:

 class Window

•void Window::SaveArea ()

 Saves the area behind the window (if the window has style WA_SAVEAREA). Used internally.

See Also:

 Window::RestoreArea

 class Window

•void Window::RestoreArea ()

 Restores the area behind the window. Used internally.

See Also:

 Window::SaveArea

 class Window

•virtual void Window::Move (int dx,int dy)

 Moves the window by (dx,dy). This can be called anywhere to move the window, and is used internally after the title bar was been dragged.

See Also:

 Window::Resize

 class Window

•virtual void Window::Resize (int x1,int y1,int x2,int y2)

 Resizes the window to the new rectangle (x1,y1),(x2,y2) which is taken relative to the old one. This can be used anywhere, and is used internally when a sizable window is resized.

See Also:

 Window::Move

 class Window

•void Window::SetClientArea (int x1,int y1,int x2,int y2)

 Sets the client rectangle (to clip client windows by) to (x1,y1),(x2,y2).

See Also:

 class Window

•void Window::CatchMouse ()

 Tells the window to catch the mouse events directly (instead of being given to the parents first). This is for dialog boxes and such that want to take control of the system.

See Also:

 Window::CatchAllMouseEvents

 Window::ReleaseMouse

 Window::CatchKeys

 Window::ReleaseKeys

 class Window

•void Window::CatchAllMouseEvents ()

 This function tells the window to catch all the mouse events including the move outside events.

See Also:

 Window::CatchMouse

 Window::ReleaseMouse

 Window::CatchKeys

 Window::ReleaseKeys

 class Window

•void Window::ReleaseMouse ()

 This function tells the window to release the control of the mouse events.

See Also:

 Window::CatchMouse

 Window::CatchAllMouseEvents

 Window::CatchKeys

 Window::ReleaseKeys

 class Window

•void Window::CatchKeys ()

 Tells the window to catch all keyboard events.

See Also:

 Window::CatchMouse

 Window::CatchAllMouseEvents

 Window::ReleaseMouse

 Window::ReleaseKeys

 class Window

•void Window::ReleaseKeys ()

 Tells the window to release the controlof the keyboard events.

See Also:

 Window::CatchMouse

 Window::CatchAllMouseEvents

 Window::ReleaseMouse

 Window::ReleaseKeys

 class Window

•Window *Window::GetParent ()

 Returns a pointer to the parent window or NULL if it doesn't have one (ie the top-window).

See Also:

 class Window

•virtual void Window::AddChild (Window *wnd)

 Adds the window wnd to the window's list of children.

See Also:

 Window::DeleteChild

 class Window

•virtual void DeleteChild (Window *wnd)

 Removes the window wnd from the window's list of children.

See Also:

 Window::AddChild

 class Window

•virtual void Window::Focus ()

 This function is called when the window gains focus. The default functionality is nothing, so it can be overriden in derived classes.

See Also:

 Window::UnFocus

 class Window

•virtual void Window::UnFocus ()

 This function is called when the window looses focus. The default functionality is nothing, so it can be overriden in derived classes.

See Also:

 Window::Focus

 class Window

•void Window::AddABSCorner (int x, int y)

 Used internally to fix us the corners of child windows after moving or resizing. Don't use.

•class WinSystem

 Declared in system.h.

 This class supplies handles all the windows and distribution of events, as well as several other system wide functions.

 Do not instantiate this class as it should be used from the global ws.

 WinSystem ()

 ~WinSystem ()

 void Init (const char *config_name)

 void CatchMouseFocus (Window *wnd)

 void ReleaseMouseFocus ()

 void CatchKeyFocus (Window *wnd)

 void ReleaseKeyFocus ()

 void QueueEvent (Window *win,const event

 void CheckMouseOrKey ()

 void CheckTimers ()

 int CheckForEvents ()

 int RunEvents ()

 void StopRunningEvents ()

 void ResetEvents ()

 Window *GetTopWindow ()

 void StartTimer (Window *wnd, int length)

 void StopTimer (Window *wnd)

 void SetupMouseCursor (Cursor *c)

 void DisplayMouse ()

 void HideMouse ()

 void HideMouseInRectangle (int x1, int y1, int x2, int y2)

 int GetDeskWidth ()

 int GetDeskHeight ()

 void SetClipBoard (const char *txt, int len, int pos)

 char *GetClipBoard ()

 char *GetConfigItem (const char *name)

 void ShellToDos ()

 void RefreshDesktop ()

 void SetTopDocument (Window *wnd)

 void QueueDocumentEvent (const event

See Also:

 ws

•WinSystem::WinSystem ()

 The constructor for class WinSystem.

See Also:

 ws

 class WinSystem

•WinSystem::~WinSystem ()

 The destructor for class WinSystem.

See Also:

 ws

 class WinSystem

•void WinSystem::Init (const char *config_name)

 This function initialises the window system. It must be called before anything else.

 It takes the name of the configuration file to use to get the system defaults from. This file is described in configuration files.

See Also:

 Configuration files

 ws

 class WinSystem

•void WinSystem::CatchMouseFocus (Window *wnd)

 This function gives the 'focus' for all mouse events to wnd. This means that wnd will get them first.

 It is preferable that the functions in the Window class be used instead of this.

See Also:

 Window::CatchMouse

 Window::CatchAllMouseEvents

 ws

 class WinSystem

•void WinSystem::ReleaseMouseFocus ()

 This function will release the 'focus' for all mouse events and return event processing to normal.

 It is preferable that the functions in the Window class be used instead of this.

See Also:

 Window::ReleaseMouse

 ws

 class WinSystem

•void WinSystem::CatchKeyFocus (Window *wnd)

 This function gives the 'focus' for all keyboard events to wnd. This means that wnd will get them first.

 It is preferable that the functions in the Window class be used instead of this.

See Also:

 Window::CatchKeys

 ws

 class WinSystem

•void WinSystem::ReleaseKeyFocus ()

 This function will release the 'focus' for all keyboard events and return event processing to normal.

 It is preferable that the functions in the Window class be used instead of this.

See Also:

 Window::ReleaseKeys

 ws

 class WinSystem

•void WinSystem::QueueEvent (Window *win,const event

 This function is used to queue an event to a particular window. The event will wait in the queue and be processed by the window when after any other events in the queue are processed.

See Also:

 ws

 class WinSystem

•void WinSystem::CheckMouseOrKey ()

 This function is used internally by the window system to check for mouse and keyboard events and slot them into the queue if they have occurred.

See Also:

 ws

 class WinSystem

•void WinSystem::CheckTimers ()

 This function is used internally by the window system to check all timers to see if they have expired and if so to slot in the apropriate events and restart them.

See Also:

 WinSystem::StartTimer

 WinSystem::StopTimer

 ws

 class WinSystem

•int WinSystem::CheckForEvents ()

 This function checks for any queued events and checks all timers etc. and processes any queued events.

 This function should be called regularly if the processing you are doing takes a long time.

See Also:

 WinSystem::RunEvents

 ws

 class WinSystem

•int WinSystem::RunEvents ()

 This function continuously checks for any queued events, timers etc. and processes them. It will continue until stopped by a call to WinSystem::StopRunningEvents.

 This is basicly the heart of the window system, this function should be called initially after the window system is initialised and once it exits the program should end.

See Also:

 WinSystem::CheckForEvents

 WinSystem::StopRunningEvents

 ws

 class WinSystem

•void WinSystem::StopRunningEvents ()

 This function will raise a flag that will cause the loop from WinSystem::RunEvents to end. This can be used to end the program from it's main loop.

See Also:

 WinSystem::RunEvents

 WinSystem::ResetEvents

 ws

 class WinSystem

•void WinSystem::ResetEvents ()

 This functions will reset the flag raised by WinSystem::StopRunningEvents.

 This functions use lies in nested calls to WinSystem::RunEvents. You can cause the most recent call to exit, and then reset the flag so that the previous call doesn't exit.

See Also:

 WinSystem::RunEvents

 WinSystem::StopRunningEvents

 ws

 class WinSystem

•Window *WinSystem::GetTopWindow ()

 Returns a pointer to the top window. This window is created when the window system is initialised and is a special window that references the whole screen, but doesn't have a memory buffer. This is mostly used internally.

See Also:

 ws

 class WinSystem

•void WinSystem::StartTimer (Window *wnd, int length)

 This function will start up a timer for the window wnd that will send an event to the window every length ms (1/1000th of a second). This sends the event W_TIMER to the window.

See Also:

 WinSystem::StopTimer

 ws

 class WinSystem

•void WinSystem::StopTimer (Window *wnd)

 This function will stop any timer set for the window wnd. It will not however clear any pending events that have not been processed.

See Also:

 WinSystem::StartTimer

 ws

 class WinSystem

•void WinSystem::SetupMouseCursor (Cursor *c)

 This function will set the mouse cursor to the cursor pointed to by c.

See Also:

 class Cursor

 ws

 class WinSystem

•void WinSystem::DisplayMouse ()

 This function will display the mouse cursor after it has been hidden.

See Also:

 WinSystem::HideMouse

 WinSystem::HideMouseInRectangle

 ws

 class WinSystem

•void WinSystem::HideMouse ()

 This function will hide the mouse.

See Also:

 WinSystem::DisplayMouse

 ws

 class WinSystem

•void WinSystem::HideMouseInRectangle (int x1, int y1, int x2, int y2)

 This function will hide the mouse cursor if it is inside the rectangle (x1,y1),(x2,y2).

See Also:

 WinSystem::DisplayMouse

 ws

 class WinSystem

•int WinSystem::GetDeskWidth ()

 This function returns the width of the desktop.

See Also:

 WinSystem::GetDeskHeight

 ws

 class WinSystem

•int WinSystem::GetDeskHeight ()

 This function returns the height of the desktop.

See Also:

 WinSystem::GetDeskWidth

 ws

 class WinSystem

•void WinSystem::SetClipBoard (const char *txt, int len, int pos)

 This function will put the text from position pos and of length from txt onto the clipboard. There are default values for pos and len, so these can be left out and txt will be treated as a string.

See Also:

 WinSystem::GetClipBoard

 ws

 class WinSystem

•char *WinSystem::GetClipBoard ()

 This function will return a pointer to the text on the clipboard.

See Also:

 WinSystem::SetClipBoard

 ws

 class WinSystem

•char *WinSystem::GetConfigItem (const char *name)

 This function returns the text associated with the configuration item name in the config file.

See Also:

 Configuration files

 ws

 class WinSystem

•void WinSystem::ShellToDos ()

 This function will perform a shell to DOS running the command processor and refreshing the desktop on return.

See Also:

 ws

 class WinSystem

•void WinSystem::RefreshDesktop ()

 This function will refresh the desktop, repainting and redrawing all windows. It is used by the WinSystem::ShellToDos function

See Also:

 ws

 class WinSystem

•void WinSystem::SetTopDocument (Window *wnd)

 Used internally to set the top document window.

See Also:

 WinSystem::QueueDocumentEvent

 ws

 class WinSystem

•void WinSystem::QueueDocumentEvent (const event

 This function queues an event to the top-most document window if there is one. These events can be used to do file operations on the documents etc.

See Also:

 ws

 class WinSystem

•void WriteChar (ViewBuffer *buf, int x, int y, int col, FONT *font, int ch)

 Declared in graphics.h.

 This function will write the character ch on the buffer buf at x,y in the colour col using the font.

See Also:

 Graphics

 WriteText

•void WriteText (ViewBuffer *buf, int x, int y, int col,FONT *font, char *text)

 Declared in graphics.h.

 This function will write the string text on the buffer buf at x,y in the colour col using the font.

See Also:

 Graphics

 WriteChar

•WinSystem ws

 Declared in system.h.

 This global is used to access the window system. This is the only instance of the WinSystem class that is allowed.

See Also:

 class WinSystem

�The event handling macros

•DECLARE_RESPONSE_TABLE

 This macro is used within the protected section of the class declaration to declare the functions required for event handling.

See Also:

 Example response table

 DEFINE_RESPONSE_TABLE

 END_RESPONSE_TABLE

•DEFINE_RESPONSE_TABLE (class, base)

 This macro is used within a source file to define a response table. A response table is a list of event macros that give responses to particular events.

 The name of the class for which you are defining the response table is class, and it's imediate base class is base.

See Also:

 Example response table

 DECLARE_RESPONSE_TABLE

 END_RESPONSE_TABLE

 Event macros

•END_RESPONSE_TABLE

 This macro is used to signify the end of a response table.

See Also:

 Example response table

 DECLARE_RESPONSE_TABLE

 DEFINE_RESPONSE_TABLE

 Event macros

�Example response table

 This is an example of the usage of the response table macros.

class Control:public Window {

 ...

 protected:

 void LButtonUp(int,int,int);

 ...

 DECLARE_RESPONSE_TABLE;

};

DEFINE_RESPONSE_TABLE

 E_LBUTTONUP

END_RESPONSE_TABLE

 ... (the rest of the source)

 This catches one event (W_LBUTTONUP) which is sent when the left mouse button is released. The function Control::LButtonUp will be called whenever this happens.

�Alphabetical list of all event macros

 •E_BOXCHECKED (ID, function)

 This macro catches the event queued when the checkbox with ControlID ID is checked.

 This calls function when the event occurs which should be a protected member function of the class of the form:

 void function (void);

See Also:

 class CheckBox

 Event macros

•E_BOXUNCHECKED (ID, function)

 This macro catches the event queued when the checkbox with ControlID ID is unchecked.

 This calls function when the event occurs which should be a protected member function of the class of the form:

 void function (void);

See Also:

 class CheckBox

 Event macros

•E_BUTTONDOWN (ID, function)

 This macro catches the event queued when the button with ControlID ID is pressed.

 This calls function when the event occurs which should be a protected member function of the class of the form:

 void function (void);

See Also:

 class Button

 Event macros

•E_BUTTONUP (ID, function)

 This macro catches the event queued when the button with ControlID ID is released.

 This calls function when the event occurs which should be a protected member function of the class of the form:

 void function(void);

See Also:

 class Button

 Event macros

•E_COMMAND (CmID, function)

 This macro calls function when the system command event occurs with command CmID.

 This event is used usually on the occurance of a selection, eg. of a menuitem or text edit control (sent when enter is pressed in the control).

 I have developed a convention of naming the member functions for command event as starting with Cm.

 The function should be of the form:

 void CmXXXX (void);

See Also:

 Event macros

•E_DOUBLECLICK (ID, function)

 This macro catches the event queued when the button with ControlID ID is double clicked.

 This calls function when the event occurs which should be a protected member function of the class of the form:

 void function (void);

See Also:

 class Button

 Event macros

•E_FILELIST (ID,function)

 This catches the event queued by the FileList whenever a new filename is selected.

 ID is the ControlID of the file list to catch the event from, and function is the name of a protected function in the current class of the form:

 void function (void);

See also:

 class FileList

 Event macros

•E_FILELISTSELECT (ID,function)

 This catches the event queued by the FileList when a filename is double-clicked on or enter is pressed on a filename.

 ID is the ControlID of the file list to catch the event from, and function is the name of a protected function in the current class of the form:

 void function (void);

See also:

 class FileList

 Event macros

•E_KEYCODE (key, scan, function)

 This catches the system event when a key is hit on the keyboard with a certain keycode and scancode.

 The function called should be a protected member function of the current class of the form:

 void function (int key_stat);

 Where key_stat will be the current status of the keyboard (ie alt etc. keys).

See Also:

 Keyboard status constants

 Event macros

•E_KEYPRESS

 This catches the system event when a key is hit on the keyboard.

 The function called should be a protected member function of the current class of the form:

 void KeyPress (int key, int scan, int key_stat);

 Where key is the keycode, scan is the scancode for the key pressed and key_stat is the current status of the keyboard.

See Also:

 Keyboard status constants

 Event macros

•E_KEYPRESS

 This catches the system event when a key is hit on the keyboard. It is exactly the same as E_KEYPRESS except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void KeyPress (int key, int scan, int key_stat, int time);

 Where key is the keycode, scan is the scancode for the key pressed, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

See Also:

 Keyboard status constants

 Event macros

•E_LBUTTONDOWN

 This macro catches the event queued when the left mouse button is pressed.

 The function called should be a protected member function of the current class of the form:

 void LButtonDown (int x, int y, int key_stat);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot and key_stat is the current status of the keyboard.

See Also:

 Keyboard status constants

 Event macros

•E_LBUTTONDOWNT

 This macro catches the event queued when the left mouse button is pressed. It is exactly the same as E_LBUTTONDOWN except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void LButtonDown (int x, int y, int key_stat, int time);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

See Also:

 Keyboard status constants

 Event macros

•E_LBUTTONUP

 This macro catches the event queued when the left mouse button is released.

 The function called should be a protected member function of the current class of the form:

 void LButtonUp (int x, int y, int key_stat);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot and key_stat is the current status of the keyboard.

See Also:

 Keyboard status constants

 Event macros

•E_LBUTTONUPT

 This macro catches the event queued when the left mouse button is released. It is exactly the same as E_LBUTTONUP except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void LButtonUp (int x, int y, int key_stat, int time);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

See Also:

 Keyboard status constants

 Event macros

•E_MBUTTONDOWN

 This macro catches the event queued when the middle mouse button is pressed.

 The function called should be a protected member function of the current class of the form:

 void MButtonDown (int x, int y, int key_stat);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot and key_stat is the current status of the keyboard.

See Also:

 Keyboard status constants

 Event macros

•E_MBUTTONDOWNT

 This macro catches the event queued when the middle mouse button is pressed. It is exactly the same as E_MBUTTONDOWN except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void MButtonDown (int x, int y, int key_stat, int time);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

See Also:

 Keyboard status constants

 Event macros

•E_MBUTTONUP

 This macro catches the event queued when the middle mouse button is released.

 The function called should be a protected member function of the current class of the form:

 void MButtonUp (int x, int y, int key_stat);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot and key_stat is the current status of the keyboard.

See Also:

 Keyboard status constants

 Event macros

•E_MBUTTONUPT

 This macro catches the event queued when the middle mouse button is released. It is exactly the same as E_MBUTTONUP except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void MButtonUp (int x, int y, int key_stat, int time);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

See Also:

 Keyboard status constants

 Event macros

•E_MOUSEMOVE

 This macro catches the event queued when the mouse is moved.

 The function called should be a protected member function of the current class of the form:

 void MouseMove (int x, int y, int key_stat, int but_stat);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot and key_stat is the current status of the keyboard.

 The but_stat is the button status which will be a combination of the constants:

 MBS_LEFT_BUTTON == 1

 MBS_RIGHT_BUTTON == 2

 MBS_MIDDLE_BUTTON == 4

 Depending on which buttons are down.

See Also:

 Keyboard status constants

 Event macros

•E_MOUSEMOVET

 This macro catches the event queued when the mouse is moved. It is exactly the same as E_MOUSEMOVE except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void MouseMove (int x, int y, int key_stat, int but_stat, int time);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

 The but_stat is the button status which will be a combination of the constants:

 MBS_LEFT_BUTTON == 1

 MBS_RIGHT_BUTTON == 2

 MBS_MIDDLE_BUTTON == 4

 Depending on which buttons are down.

See Also:

 Keyboard status constants

 Event macros

•E_NOTIFY (CmID, function)

 This macro calls function when the system notify event occurs with from the control CmID.

 The function should be of the form:

 void function (int);

 Where the number in the notify event is sent to the function as an argument.

See Also:

 Event macros

•E_RBUTTONDOWN

 This macro catches the event queued when the right mouse button is pressed.

 The function called should be a protected member function of the current class of the form:

 void RButtonDown (int x, int y, int key_stat);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot and key_stat is the current status of the keyboard.

See Also:

 Keyboard status constants

 Event macros

•E_RBUTTONDOWNT

 This macro catches the event queued when the right mouse button is pressed. It is exactly the same as E_RBUTTONDOWN except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void RButtonDown (int x, int y, int key_stat, int time);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

See Also:

 Keyboard status constants

 Event macros

•E_RBUTTONUP

 This macro catches the event queued when the right mouse button is released.

 The function called should be a protected member function of the current class of the form:

 void RButtonUp (int x, int y, int key_stat);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot and key_stat is the current status of the keyboard.

See Also:

 Keyboard status constants

 Event macros

•E_RBUTTONUPT

 This macro catches the event queued when the right mouse button is released. It is exactly the same as E_RBUTTONUP except that the time of the event is also sent.

 The function called should be a protected member function of the current class of the form:

 void RButtonUp (int x, int y, int key_stat, int time);

 Where x and y are the absolute x-coord and y-coord of the cursor's hot-spot, key_stat is the current status of the keyboard and time is the system time of the event (in ms).

See Also:

 Keyboard status constants

 Event macros

•E_SLIDERDOWN (ID, function)

 This macro catches the event queued when a slider moves down.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_SLIDERLEFT (ID, function)

 This macro catches the event queued when a slider moves left.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_SLIDERMOVE (ID, function)

 This macro catches the event queued when a slider moves.

 This calls function which should be a protected member function of the form:

 void function (int distance);

 Where distance is the distance the slider has moved in a given direction.

 A positive number signifies down or right.

See Also:

 class Slider

 Event macros

•E_SLIDERPAGEDOWN (ID, function)

 This macro catches the event queued when a slider moves a page down.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_SLIDERPAGELEFT (ID, function)

 This macro catches the event queued when a slider moves a page left.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_SLIDERPAGERIGHT (ID, function)

 This macro catches the event queued when a slider moves a page right.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_SLIDERPAGEUP (ID, function)

 This macro catches the event queued when a slider moves a page up.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_SLIDERRIGHT (ID, function)

 This macro catches the event queued when a slider moves right.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_SLIDERUP (ID, function)

 This macro catches the event queued when a slider moves up.

 This calls function which should be a protected member function of the form:

 void function (void);

See Also:

 class Slider

 Event macros

•E_TIMER

 This macro catches the timer event dispatched whenever the timer for the window expires.

 The function called should be a protected member function of the form:

 void Timer (void);

See Also:

 Window::StartTimer

 Event macros

�List of all header files for the library

•button.h

 This header file has all the declarations for button controls.

 The classes declared:

 class BasicButton

 class IconButton

 class TextButton

 The event macros defined:

 E_BUTTONUP

 E_BUTTONDOWN

 E_BUTTONDOUBLECLICK

•checkbox.h

 This header file contains all the declarations for the checkbox control.

 The class declared:

 class CheckBox

 The event macros defined:

 E_BOXCHECKED

 E_BOXUNCHECKED

•cursor.h

 This header file contains all the declarations for dealing with cursors and all the system icons.

 Functions declared:

 void BitBltCursor (const Cursor *cur, int x, int y)

 void CreateCursors ()

 void DestroyCursors ()

 void CreateButtons ()

 void DestroyButtons ()

 Structures declared:

 class Cursor

 Global variables declared:

 Cursor *MainCursor

 ViewBuffer *MaxBoxIcns []

 ViewBuffer *SysBoxIcn

 ViewBuffer *ArrowIcns []

 ViewBuffer *FolderIcn

 ViewBuffer *FileIcn

 ViewBuffer *DriveIcns []

 ViewBuffer *RadioButtonIcns []

•edit.h

 This header file contains all the declarations for the edit text control.

 Defined constants:

 EDIT_TYPE_TEXT

 EDIT_TYPE_NUMBER

 EDIT_TYPE_NEG_NUM

 EDIT_TYPE_FLOAT_NUM

 The class declared:

 class EditText

•eventque.h

 This header file contains all the declarations for the system event queue.

 Functions declared:

 DWORD GetTicks

 void InitSystemEventQueue

 void DeInitSystemEventQueue

 void SetMouseSpeed

 void SetMousePosition

 SYSTEM_EVENT *GetNextSystemEvent

See Also:

 Keyboard status constants

•events.h

 This header file declares all the system event handling structures and macros.

 The class declared:

 class event

See Also:

 Event Macros

•filedlg.h

 This header file contains all the declarations for the file dialog box and related classes.

 Classes declared:

 class FileList

 class FileDlg

 Event macros defined:

 E_FILELIST

 E_FILELISTSELECT

•help.h

 This header file contains all the declarations for the help file handling system.

 Classes declared:

 class HelpTopic

 class HelpDataBase

 class HelpWindow

•menu.h

 This header file contains all the declarations for the menus.

 Classes declared:

 class MenuItem

 class MenuSeperator

 class Menu

 class PopupMenu

 class AutoMenu

 class AutoPopupMenu

•message.h

 This header file contains the declarations for the message dialog box.

 The class declared:

 class MessageBox

•progress.h

 This header file contains the declarations for the progress indicator control.

 The class declared:

 class ProgressIndicator

•radio.h

 This header file contains all the declarations for the radio button control.

 Classes declared:

 class RadioButton

 class RadioButtonContainer

•resource.h

 This header file contains all the declarations for handling resource files.

 The class declared:

 class ResourceManager

 The functions declared:

 int AddResource

 int AddResourceCompressed

 int CreateResourceFile

 int DeleteResource

•scrolwin.h

 This header file contains all the declarations for the scrolling window class.

 The class declared:

 class ScrollingWindow

•slider.h

 This header file contains all the declarations for the sliders.

 Classes declared:

 class Slider

 class HSlider

 class VSlider

 Event macros defined:

 E_SLIDERUP

 E_SLIDERDOWN

 E_SLIDERLEFT

 E_SLIDERRIGHT

 E_SLIDERPAGEUP

 E_SLIDERPAGEDOWN

 E_SLIDERPAGELEFT

 E_SLIDERPAGERIGHT

•static.h

 This header file contains the declarations for the static text control.

 The class declared:

 class StaticText

•system.h

 This header file contains all the declarations for the window system control class.

 The class declared:

 class WinSystem

 The global variables declared:

 FONT *SysFont

 FONT *SysFontBold

 FONT *SysFontItallic

 FONT *SysFontBoldItallic

 WinSystem ws

 The functions declared:

 void Error

 void HDip

 void VDip

 void HBump

 void VBump

 void Frame

 void InvFrame

 void FrameBox

 void InvFrameBox

 int StringWidth1

 void WriteText1

•tabwin.h

 This header file contains all the declarations for the tab navigable window class.

 The class declared:

 class TabWin

•window.h

 This header file contains all the declarations for the basic window class.

 Class declared:

 class Window

 Constants defined:

 FWIDTH

 The width of the window border.

 CORNER

 The width of the sizing corners.

 BORDER_WIDTH

 A useful constant equal to the whole width of a window's border.

 CAPTION_HEIGHT

 A usefule constant equal to the height of the caption.

 SIZING_BORDER_WIDTH

 A useful constant equal to the whole width of a sizing window's border.

 ID_CANCEL

 ID_OK

 ID_HELP

 ID_MAXBOX

 ID_SYSBOX

 Standard ControlID's.

 DOUBLE_CLICK_SPEED

 The double click speed in milliseconds.

 ControlID

 This is equivalent to an integer.

ÿ

IconButton

BasicButton

TextButton

CheckBox

AutoMenu

EditText

PopupMenu

Menu

RadioButton

AutoPopupMenu

RadioButtonContainer

Window

MenuSeperator

MenuItem

FileList

ProgressIndicator

HelpWindow

ScrollingWindow

HSlider

Slider

VSlider

FileDlg

TabWin

MessageBox

